60 resultados para super heavy elements (SHE)
Resumo:
This thesis Entitled studies on the effect of toxic heavy metal mercury on the physiology and biochemistry of an estuarine crab scylla serrata (Forskal). Evaluate the toxicity of three sub lethal concentrations of mercury, viz., 0.009 mg/l, 0.02 mg/1, and 0.04 mg/l on the mud crab, Scylla serrata through bioaccumulation, and depuration studies. To characterize the biochemical responses to the sub-lethal stress of mercury in chelate muscles, abdominal muscles, hepatopancreas and gills. To study the activity pattern of acid and alkaline phosphatases in mercury-exposed crabs. To evaluate the induced changes in these tissues through histopathological studies,The Cochin backwaters is one of the most productive and biologically active backwater systems, and is the habitat of varieties of fishes, mollusks, and crustaceans, though this water body also receives tons of effluents from factories located on the banks of the river, Periyar.To study the activity levels of acid and alkaline phosphatases in crabs, at three time periods, exposed to three sub lethal concentration of mercury,
Resumo:
The present scientific investigation of the effects of copper, mercury and cadmium has focussed on their effects on two commercially important marine bivalve species, Perna indica (brown mussel) and Donax incarnatus (wedge clam), conspicuous representatives of the tropical intertidal areas. The investigation centred around delineating the cause and effects of heavy metal stress, individually and in combination on these species under laboratory conditions. A clear understanding of the cause and effect can be had only if laboratory experiments are conducted employing sub-lethal concentrations of the above toxicants. Therefore, during the course of the investigation, sub-lethal concentrations of copper, mercury and cadmium were employed to assess the concentration dependent effects on survival, ventilation rate, O:N ratio and tissues. The results obtained are compared with the already available information and partitioned in sections to make a meaningful presentation.The thesis is presented in five chapters comprising INTRODUCTION, ACUTE TOXICITY, VENTILATION RATE, OXYGEN : NITROGEN RATIO and HISTOPATHOLOGY. Each chapter has been divided into various sections such as INTRODUCTION, REVIEW OF LITERATURE, MATERIAL AND METHODS, RESULTS and DISCUSSION
Resumo:
In this thesis certain important aspects of heavy metal toxicity have been worked out. Recent studies have clearly shown that when experimental media contained more than one heavy metals, such metals could conspicuously influence the toxic reaction of the animals both in terms of quantity and nature. The experimental results available on individual metal toxicity show that, in majority of such results, unrealistically high concentrations of dissolved metals are involved. A remarkable number of factors have been shown to influence metal toxicity such as various environmental factors particularly temperature and salinity, the condition of the organism and the ability of some of the marine organisms to adapt to metallic contamination. Further, some of the more sensitive functions like embryonic and larval development, growth and fecundity, oxygen utilization and the function of various enzymes are found to be demonstrably sensitive in the presence of heavy metals. However, some of the above functions could be compensated for by adaptive process. If it is assumed that the presence of a single metal in higher concentrations could affect the life function of marine animals, more than one metal in the experimental media should manifest such effects in a greater scale. Commonly known as synergism or more than additivity, majority of heavy metals bring about synergistic reaction .The work presented in this thesis comprises lethal and sublethal toxicities of different salt forms of copper and silver on the brown mussel Perna indica. during the present investigation sublethal concentrations of copper and silver in their dent effects on survival, oxygen consumption, filtration, accumulation and depuration on Perna indica. The results are presented under different sections to make the presentation meaningful .
Resumo:
A comparative study of acid-base properties and catalytic activity of Sn-La and Sn-Sm mixed oxides and their corresponding sulfate modified analogues are reported in this thesis. The catalytic activity and product selectivity in the decomposition of alcohols are correlated with the acid-base and redox properties of the catalyst systems under study The effect of catalyst preparation, pretreatment and various reaction parameters on the catalytic activity of sulfate modified oxides is investigated in the oxidative dehydrogenation reactions The experimental conditions are optimised to synthesise industrially important organic chemicals viz. 2,6 xylenol, o-cresol, N-methylanilne and N,N-dimethylaniline employing the mixed oxide systems. The effect of sulfate treatment on the catalytic activity of these systems in the alkylation reactions of phenol, anisole and aniline is also investigated and the merits and demerits of sulfate treatment are highlighted.
Resumo:
This thesis attempts to investigate the problems associated with such schemes and suggests a software architecture, which is aimed towards achieving a meaningful discovery. Usage of information elements as a modelling base for efficient information discovery in distributed systems is demonstrated with the aid of a novel conceptual entity called infotron. The investigations are focused on distributed systems and their associated problems. The study was directed towards identifying suitable software architecture and incorporating the same in an environment where information growth is phenomenal and a proper mechanism for carrying out information discovery becomes feasible. An empirical study undertaken with the aid of an election database of constituencies distributed geographically, provided the insights required. This is manifested in the Election Counting and Reporting Software (ECRS) System. ECRS system is a software system, which is essentially distributed in nature designed to prepare reports to district administrators about the election counting process and to generate other miscellaneous statutory reports.
Resumo:
This study enfolds the environment of deposition and the lateral variation in texture, mineralogy and geochemistry of the Ashtamudy lake sediments. While the heavy mineral and clay mineral investigations enable us to decipher the nature, texture and source of sediments; organic matter and carbonate contents and the geochemical analysis of major and minor elements help establish the distribution and concentration of the same in regard to the various physico-chemical processes operating in the lake. Study of trace elements holds prime importance in this work, since their concentrations can be used to outline the extent of contaminated bottom area, as well as the source and dispersal paths of discharged_pollutants. In short, this study brings out a vivid picture of the mineralogy and geochemistry of the lake sediments in different environments, viz., the freshwater, brackish water and marine environments that are confined to the eastern, central and western parts of the lake respectively. For the better understanding and expression of the results of the analysis, the lake has been divided into 3 zones namely: eastern part, central part and western part.
Resumo:
No serious attempt has so far been made in India to make use of the ‘Mussel watch’ concept as a useful tool for pollution monitoring of the marine and estuarine environment. The recently conducted 'National seminar on mussel watch’ by the Cochin University of Science and Technology (13-14 Feb, 1986) discussed the technical aspects related to mussel watch programme and the application of sentinel organism concept to the coastal areas of India. It is well known that the biological and physiological characteristics of the organism inhabiting tropical waters such as those prevailing in India, and the ecological as well as the environmental characteristics of temperate areas, where mussel watch programmes are already in existence differ greatly. So it is essential to adopt the techniques and standards developed for temperate species to the situations and conditions in India. In this context it is a prerequisite to collect information on physiology and other biological indices of stress of possible sentinel organisms like P.viridis. In consideration of the above, P. viridis which is a potential sentinel organism, is selected for the present study
Resumo:
The development of new materials has been the hall mark of human civilization. The quest for making new devices and new materials has prompted humanity to pursue new methods and techniques that eventually has given birth to modern science and technology. With the advent of nanoscience and nanotechnology, scientists are trying hard to tailor materials by varying their size and shape rather than playing with the composition of the material. This, along with the discovery of new and sophisticated imaging tools, has led to the discovery of several new classes of materials like (3D) Graphite, (2D) graphene, (1D) carbon nanotubes, (0D) fullerenes etc. Magnetic materials are in the forefront of applications and have beencontributing their share to remove obsolescence and bring in new devices based on magnetism and magnetic materials. They find applications in various devices such as electromagnets, read heads, sensors, antennas, lubricants etc. Ferromagnetic as well as ferrimagnetic materials have been in use in the form of various devices. Among the ferromagnetic materials iron, cobalt and nickel occupy an important position while various ferrites finds applications in devices ranging from magnetic cores to sensors.
Resumo:
The present work is focused on the organelle and biochemical responses to heavy metal exposure in the fish Oreochromis mossambicus giving particular importance to the metal detoxifying machinery of the organism. The thesis is an outcome of the effort aimed at developing practicable monitoring techniques to deliver guidelines for biological effect monitoring and the need for specific biochemical methods to detect biological effects of heavy metals that can be interpreted in terms of the health status of the individual organism and eventually alterations in vital processes as growth and reproduction. The efficiency of the metal detoxifying metallothioneins which is an attractive tool for biological monitoring, their role as scavengers of trace metal ions and thus in relieving the biological machinery from their toxicity effects are important themes of this study. Efforts have also been made to test the reliability of the spill over hypothesis of the action of metallothioneins (Winge et a1.,1973) and their use as a biological barometer of heavy metal stress.
Resumo:
Industrialisation affects air, water, and soil. Industrial effluents which enter the aquatic environment either by direct disposal or through run off, affect living organisms at morphological and physiological levels. In any living tissue toxic materials exert their effects first at molecular and biochemical levels (Robbins and Angell, 1976). Most of the industrial effluents contain elevated concentrations of organic and inorganic chemicals capable of eliciting stimulatory or inhibitory effects on the metabolism of aquatic organisms. Heavy metals form an important group of environmental pollutants. Effects of pollution on the aquatic environment by heavy metals have received considerable attention in recent years due to their toxicity even at very low levels, persistence in the environment, and chances of getting biomagnified. A pollutant that does not affect a particular process under normal unstressed condition may affect the ability of the animal to adjust to changing environmental conditions which ultimately decrease its chances of survival (Thurberg et al., 1973
Resumo:
The nearshore marine ecosystem is a dynamic environment impacted by many activities, especially the coastal waters and sediments contiguous to major urban areas. Although heavy metals are natural constituents of the marine environment, inputs are considered to be conservative pollutants and are potentially toxic, accumulate in the sediment, are bioconcentrated by organisms and may cause health problems to humans via the food chain. A variety of metals in trace amounts are essential for biological processes in all organisms, but excessive levels can be detrimental by acting as enzyme inhibitors. Discharge of industrial wastewater, agriculture runoff and untreated sewage pose a particularly serious threat to the coastal environment of Kerala, but there is a dearth of studies in documenting the contaminant metals. This study aimed principally to assess such contamination by examining the results of heavy metal (Cu, Pb, Cr, Ni, Zn, Cd and Hg) analysis in seawater, sediment and benthic biota from a survey of five transects along the central and northern coast of Kerala in 2008 covering a 10.0 km stretch of near shore environment in each transect. Trophic transfer of metal contaminants from aquatic invertebrates to its predators was also assessed, by employing a suitable benthic food chain model in order to understand which all metals are undergoing biotransference (transfer of metals from a food source to consumer).The study of present contamination levels will be useful for potential environmental remediation and ecosystem restoration at contaminated sites and provides a scientific basis for standards and protective measures for the coastal waters and sediments. The usefulness of biomonitor proposed in this study would allow identification of different bioavailable metals as well as provide an assessment of the magnitude of metal contamination in the coastal marine milieu. The increments in concentration of certain metals between the predator and prey discerned through benthic food chain can be interpreted as evidence of biotransference.
Resumo:
Oceans play a vital role in the global climate system. They absorb the incoming solar energy and redistribute the energy through horizontal and vertical transports. In this context it is important to investigate the variation of heat budget components during the formation of a low-pressure system. In 2007, the monsoon onset was on 28th May. A well- marked low-pressure area was formed in the eastern Arabian Sea after the onset and it further developed into a cyclone. We have analysed the heat budget components during different stages of the cyclone. The data used for the computation of heat budget components is Objectively Analyzed air-sea flux data obtained from WHOI (Woods Hole Oceanographic Institution) project. Its horizontal resolution is 1° × 1°. Over the low-pressure area, the latent heat flux was 180 Wm−2. It increased to a maximum value of 210 Wm−2 on 1st June 2007, on which the system was intensified into a cyclone (Gonu) with latent heat flux values ranging from 200 to 250 Wm−2. It sharply decreased after the passage of cyclone. The high value of latent heat flux is attributed to the latent heat release due to the cyclone by the formation of clouds. Long wave radiation flux is decreased sharply from 100 Wm−2 to 30 Wm−2 when the low-pressure system intensified into a cyclone. The decrease in long wave radiation flux is due to the presence of clouds. Net heat flux also decreases sharply to −200 Wm−2 on 1st June 2007. After the passage, the flux value increased to normal value (150 Wm−2) within one day. A sharp increase in the sensible heat flux value (20 Wm−2) is observed on 1st June 2007 and it decreased there- after. Short wave radiation flux decreased from 300 Wm−2 to 90 Wm−2 during the intensification on 1st June 2007. Over this region, short wave radiation flux sharply increased to higher value soon after the passage of the cyclone.
Resumo:
The research investigations on pollution, particularly in coastal/ estuarine environments are recent ones and started only in 1970s. Hence the informations available are fragmentary and scattered. They throw some light only on either the concentration of heavy metals in water or in sediment or in organisms. No concerted efforts have been made to consolidate and correlate the results between the environment and biota. Literature on the level of concentration of heavy metals in different tissues of organisms with regard to their availability in the living media, their ratio, their inter—relationship, tolerance limit of organisms, etc. are very few or rather nil. in view of the importance enumerated above, the candidate has selected the topic "Effects of some heavy metals copper, zinc and lead on certain tissues of E E (Hamilton and Buchanan) in different environments" for detailed studies and to understand systematically (i) the source of effluents and wastes, (ii) the concentration of heavy metals copper, zinc and lead in water, in sediments and in tissues of the test animal, (iii) their effects, (iv) capacity of tolerance and accumulation in different tissues of the animal, and (V) the "Bioaccumulation Factor", etc.
Resumo:
Catalysis research underpins the science of modern chemical processing and fuel technologies. Catalysis is commercially one of the most important technologies in national economies. Solid state heterogeneous catalyst materials such as metal oxides and metal particles on ceramic oxide substrates are most common. They are typically used with commodity gases and liquid reactants. Selective oxidation catalysts of hydrocarbon feedstocks is the dominant process of converting them to key industrial chemicals, polymers and energy sources.[1] In the absence of a unique successfiil theory of heterogeneous catalysis, attempts are being made to correlate catalytic activity with some specific properties of the solid surface. Such correlations help to narrow down the search for a good catalyst for a given reaction. The heterogeneous catalytic performance of material depends on many factors such as [2] Crystal and surface structure of the catalyst. Thermodynamic stability of the catalyst and the reactant. Acid- base properties of the solid surface. Surface defect properties of the catalyst.Electronic and semiconducting properties and the band structure. Co-existence of dilferent types of ions or structures. Adsorption sites and adsorbed species such as oxygen.Preparation method of catalyst , surface area and nature of heat treatment. Molecular structure of the reactants. Many systematic investigations have been performed to correlate catalytic performances with the above mentioned properties. Many of these investigations remain isolated and further research is needed to bridge the gap in the present knowledge of the field.
Resumo:
Industrialization of our society has led to an increased production and discharge of both xenobiotic and natural chemical substances. Many of these chemicals will end up in the soil. Pollution of soils with heavy metals is becoming one of the most severe ecological and human health hazards. Elevated levels of heavy metals decrease soil microbial activity and bacteria need to develop different mechanisms to confer resistances to these heavy metals. Bacteria develop heavy-metal resistance mostly for their survivals, especially a significant portion of the resistant phenomena was found in the environmental strains. Therefore, in the present work, we check the multiple metal tolerance patterns of bacterial strains isolated from the soils of MG University campus, Kottayam. A total of 46 bacterial strains were isolated from different locations of the campus and tested for their resistant to 5 common metals in use (lead, zinc, copper, cadmium and nickel) by agar dilution method. The results of the present work revealed that there was a spatial variation of bacterial metal resistance in the soils of MG University campus, this may be due to the difference in metal contamination in different sampling location. All of the isolates showed resistance to one or more heavy metals selected. Tolerance to lead was relatively high followed by zinc, nickel, copper and cadmium. About 33% of the isolates showed very high tolerance (>4000μg/ml) to lead. Tolerance to cadmium (65%) was rather low (<100 μg/ml). Resistance to zinc was in between 100μg/ml - 1000μg/ml and the majority of them shows resistance in between 200μg/ml - 500μg/ml. Nickel resistance was in between 100μg/ml - 1000μg/ml and a good number of them shows resistance in between 300μg/ml - 400μg/ml. Resistance to copper was in between <100μg/ml - 500μg/ml and most of them showed resistance in between 300μg/ml - 400μg/ml. From the results of this study, it was concluded that heavy metal-resistant bacteria are widely distributed in the soils of MG university campus and the tolerance of heavy metals varied among bacteria and between locations