38 resultados para product image


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cattle feed industry is a major segment of animal feed industry. This industry is gradually evolving into an organized sector and the feed manufactures are increasingly using modern and sophisticated methods that seek to incorporate best global practices. This industry has got high potential for growth in India, given the fact that the country is the world’s leading producer of milk and its production is expected to grow at a compounded annual growth rate of 4 per cent. Besides, the concept of branded cattle feed as a packaged commodity is fast gaining popularity in rural India. There can be a positive change in the demand for cattle feed because of factors like (i) shrinkage of open land for cattle grazing, urbanization and resultant shortage of conventionally used cattle feeds, and (ii) introduction of high yield cattle requires specialized feeds. Earlier research studies done by the present authors have revealed the significant growth prospects of the branded cattle feed industry, the feed consumption pattern and the relatively high share of branded feeds, feed consumption pattern based on product types (like, pellet and mash), composition of cattle feed market and the relatively large shares of Kerala Feeds Ltd. (KFL) and Kerala Solvent Extractions Ltd. (KSE) brands, the major factors influencing the purchasing decisions etc. As a continuation of the earlier studies, this study makes a closer look into the significance of product types in the buyer behavior, level of awareness about the brand and its implications on purchasing decisions, and the brandshifting behavior and its determinants

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the backdrop of issues encountered by the marine product exports from Kerala in the traditional strongholds of the European Union and the United States, there is a need to target newer markets. The ASEAN India Trade in Goods Agreement (TIGA) though proposes to liberalize trade between India and the ASEAN member nations, fails to deliver greater market access for our marine products in the markets of the ASEAN nations. This can be attributed to factors such as the lower prevailing MFN base rate in the ASEAN nations, tariff reduction commitments reciprocated by them being lesser than India’s offers, inclusion of our prominent items of export in the restrictive lists of most of the ASEAN nations etc. Export forecast suggests that this is a market to be reckoned, which in turn stipulates the need to secure greater concessions and preferential treatment for our marine product exports in the ASEAN nations to capitalize on the gains that have been made

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognizing that high satisfaction leads to high customer loyalty, companies today are aiming for total customer satisfaction. This article explains relative impact of product quality, service quality and contextual experience on customer perceived value and intention to shop in the future. The data has been collected using a questionnaire from 205 customers of a national retailer chain. The relative importance of product quality, service quality and contextual experience on customer perceived value and thus on customer preference and future intentions was measured using multiple regression. Also, the contribution of perceived value to preference and thus on future buying intention was also measured. Structural Equation Model (SEM) using Amos 4 was used to find the overall fitness of the model. It was found that product quality, service quality and contextual experience have a major influence on customer perceived value

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Super Resolution problem is an inverse problem and refers to the process of producing a High resolution (HR) image, making use of one or more Low Resolution (LR) observations. It includes up sampling the image, thereby, increasing the maximum spatial frequency and removing degradations that arise during the image capture namely aliasing and blurring. The work presented in this thesis is based on learning based single image super-resolution. In learning based super-resolution algorithms, a training set or database of available HR images are used to construct the HR image of an image captured using a LR camera. In the training set, images are stored as patches or coefficients of feature representations like wavelet transform, DCT, etc. Single frame image super-resolution can be used in applications where database of HR images are available. The advantage of this method is that by skilfully creating a database of suitable training images, one can improve the quality of the super-resolved image. A new super resolution method based on wavelet transform is developed and it is better than conventional wavelet transform based methods and standard interpolation methods. Super-resolution techniques based on skewed anisotropic transform called directionlet transform are developed to convert a low resolution image which is of small size into a high resolution image of large size. Super-resolution algorithm not only increases the size, but also reduces the degradations occurred during the process of capturing image. This method outperforms the standard interpolation methods and the wavelet methods, both visually and in terms of SNR values. Artifacts like aliasing and ringing effects are also eliminated in this method. The super-resolution methods are implemented using, both critically sampled and over sampled directionlets. The conventional directionlet transform is computationally complex. Hence lifting scheme is used for implementation of directionlets. The new single image super-resolution method based on lifting scheme reduces computational complexity and thereby reduces computation time. The quality of the super resolved image depends on the type of wavelet basis used. A study is conducted to find the effect of different wavelets on the single image super-resolution method. Finally this new method implemented on grey images is extended to colour images and noisy images

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When variables in time series context are non-negative, such as for volatility, survival time or wave heights, a multiplicative autoregressive model of the type Xt = Xα t−1Vt , 0 ≤ α < 1, t = 1, 2, . . . may give the preferred dependent structure. In this paper, we study the properties of such models and propose methods for parameter estimation. Explicit solutions of the model are obtained in the case of gamma marginal distribution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical methods of analysing time series by Box-Jenkins approach assume that the observed series uctuates around changing levels with constant variance. That is, the time series is assumed to be of homoscedastic nature. However, the nancial time series exhibits the presence of heteroscedasticity in the sense that, it possesses non-constant conditional variance given the past observations. So, the analysis of nancial time series, requires the modelling of such variances, which may depend on some time dependent factors or its own past values. This lead to introduction of several classes of models to study the behaviour of nancial time series. See Taylor (1986), Tsay (2005), Rachev et al. (2007). The class of models, used to describe the evolution of conditional variances is referred to as stochastic volatility modelsThe stochastic models available to analyse the conditional variances, are based on either normal or log-normal distributions. One of the objectives of the present study is to explore the possibility of employing some non-Gaussian distributions to model the volatility sequences and then study the behaviour of the resulting return series. This lead us to work on the related problem of statistical inference, which is the main contribution of the thesis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis explores the area of still image compression. The image compression techniques can be broadly classified into lossless and lossy compression. The most common lossy compression techniques are based on Transform coding, Vector Quantization and Fractals. Transform coding is the simplest of the above and generally employs reversible transforms like, DCT, DWT, etc. Mapped Real Transform (MRT) is an evolving integer transform, based on real additions alone. The present research work aims at developing new image compression techniques based on MRT. Most of the transform coding techniques employ fixed block size image segmentation, usually 8×8. Hence, a fixed block size transform coding is implemented using MRT and the merits and demerits are analyzed for both 8×8 and 4×4 blocks. The N2 unique MRT coefficients, for each block, are computed using templates. Considering the merits and demerits of fixed block size transform coding techniques, a hybrid form of these techniques is implemented to improve the performance of compression. The performance of the hybrid coder is found to be better compared to the fixed block size coders. Thus, if the block size is made adaptive, the performance can be further improved. In adaptive block size coding, the block size may vary from the size of the image to 2×2. Hence, the computation of MRT using templates is impractical due to memory requirements. So, an adaptive transform coder based on Unique MRT (UMRT), a compact form of MRT, is implemented to get better performance in terms of PSNR and HVS The suitability of MRT in vector quantization of images is then experimented. The UMRT based Classified Vector Quantization (CVQ) is implemented subsequently. The edges in the images are identified and classified by employing a UMRT based criteria. Based on the above experiments, a new technique named “MRT based Adaptive Transform Coder with Classified Vector Quantization (MATC-CVQ)”is developed. Its performance is evaluated and compared against existing techniques. A comparison with standard JPEG & the well-known Shapiro’s Embedded Zero-tree Wavelet (EZW) is done and found that the proposed technique gives better performance for majority of images

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the thesis was to design and develop spatially adaptive denoising techniques with edge and feature preservation, for images corrupted with additive white Gaussian noise and SAR images affected with speckle noise. Image denoising is a well researched topic. It has found multifaceted applications in our day to day life. Image denoising based on multi resolution analysis using wavelet transform has received considerable attention in recent years. The directionlet based denoising schemes presented in this thesis are effective in preserving the image specific features like edges and contours in denoising. Scope of this research is still open in areas like further optimization in terms of speed and extension of the techniques to other related areas like colour and video image denoising. Such studies would further augment the practical use of these techniques.