54 resultados para planar antennas
Resumo:
Antennas are indispensable component of any wireless communication device. An antenna is a transducer between the transmitter and the free space waves and vice versa. They efficiently transfer electromagnetic energy from a transmission line into free space. But the present day communication applications require compact and ultra wide band designs which cannot be catered by simple microstrip based designs. PIFAs have solved the problem to some extend, but the field of antennas needs more innovative designs In this thesis the design and development of compact planner antenna are presented. Emphasis is given to the design of the feed as well as the radiator resulting in simple compact uniplanar geometries. The Asymmetric coplanar feed used to excite the antennas is found to be a suitable choice for feeding compact antennas.The main objectives of the study are the design of compact single, dual and multi band antennas with uniplanar structure and extension of the design for practical GSM/WLAN applications and Ultra compact antennas using the above techniques and extension of the design to antennas for practical applications like RFID/DVB-H. All the above objectives are thoroughly studied. Antennas with ultra compact dimensions are obtained as a result of the study. Simple equations are provided to design antennas with the required characteristics. The design equations are verified by designing different antennas for different applications.
Resumo:
The Present thesis deals with the numerical as well as experimental investigations conducted on the resonance and radiation characteristics of Drum shaped monopole antenna, Funnel shaped monopole antenna and the shorted coplanar antenna.An introduction to the over view of antennas, state of the art planar antenna technologies, different feeding techniques and introduction of coplanar waveguides have been discussed.
Resumo:
The thesis is the outcome of the experimental and theoretical investigations carried out on a novel slotted microstrip antenna.The antenna excites two resonance frequencies and provides orthogonal polarization. The radiation characteristics of the antenna are studied in detail. The antenna design is optimized using IE3D electromagnetic simulation tool. The frequency-Difference Time-Domain (FDTD) method is employed for the analysis of the antenna.The antenna can be used for personal and satellite communication applications.
Resumo:
The thesis is the outcome of the experimental and theoretical Investigations on novel feeding techniques for bandwidth enhancement of microstrip patches. The new feeding techniques provide bandwidth enhancement without deteriorating the radiation characteristics of the antenna. The antenna is analysed using finite Difference Time Domain (FDTD) method. The predicated results are compared with the experimental results and excellent agreement is observed. The results are also verified using IE3D simulation software. The antenna is suitable for personal and broadband communications.
Resumo:
Department of Elecctronics, Cochin University of Science and Technology
Resumo:
A compact, planar, wideband antenna designed by modifying the coplanar waveguide is presented in this letter. The proposed antenna finds a wide range of applications including advanced wireless systems (AWS), DCS-1800, DCS-1900/PCS/PHS, WiBro, BlueTooth/WLAN/WiBree/ZigBee, DMB, Global Star Satellite Phones, and digital cordless phones. Wide bandwidth > 75% centered at 2.50 GHz, quasi-omnidirectional radiation coverage along with moderate gain and efficiency are the salient features of the antenna. A prototype fabricated on a substrate with dielectric constant 4.4 and thickness 1.6 mm occupies an area of (31times 64) mm2. Details of antenna design and discussions on the effect of various antenna parameters on the radiation characteristics are presented.
Resumo:
The design of a compact, single feed, dual frequency dual polarized and electronically reconfigurable microstrip antenna is presented in this paper. A square patch loaded with a hexagonal slot having extended slot arms constitutes the fundamental structure of the antenna. The tuning of the two resonant frequencies is realized by varying the effective electrical length of the slot arms by embedding varactor diodes across the slots. A high tuning range of 34.43% (1.037–1.394 GHz) and 9.27% (1.359–1.485 GHz) is achieved for the two operating frequencies respectively, when the bias voltage is varied from 0 to −30 V. The salient feature of this design is that it uses no matching networks even though the resonant frequencies are tuned in a wide range with good matching below −10 dB. The antenna has an added advantage of size reduction up to 80.11% and 65.69% for the two operating frequencies compared to conventional rectangular patches.
Resumo:
The practical applications of microstrip antennas for mobile systems are in portable or pocket-size equipment and in vehicles. Antennas for VHFIUHF handheld portable equipment, such as pagers, portable telephones and transceivers, must naturally be small in size, light in weight and compact in structure. There is a growing tendency for portable equipment to be made smaller and smaller as the demand for personal communication rapidly increases, and the development of very compact hand-held units has become urgent.In this thesis work, main aim is to develop a more and more reduced sized microstrip patch antenna. It is well known that the smaller the antenna size, the lower the antenna efficiency. During the period of work, three different compact circular sided microstrip patches are developed and analysed, which have a significant size reduction compared to standard circular disk antenna (the most compact one of the basic microstrip patch configurations), without much deterioration of its properties like gain, bandwidth and efficiency. In addition to this the interesting results, dual port operation and circular polarization are also observed for some typical designs of these patches. These make the patches suitable for satellite and mobile communication systems.The theoretical investigations are carried out on these compact patches. The empirical relations are developed by modifying the standard equations of rectangular and circular disk microstrip patches, which helps to predict the resonant frequencies easily.
Resumo:
In this work,we investigate novel designs of compact electronically reconfigurable dual frequency microstrip antennas with a single feed,operating mainly in L-band,without using any matching networks and complicated biasing circuitry.These antennas have been designed to operate in very popular frequency range where a great number of wireless communication applications exist.Efforts were carried out to introduce a successful,low cost reconfigurable dual-frequency microstrip antenna design to the wireless and radio frequency design community.
Resumo:
This thesis presents the microwave dielectric properties of two novel dielectric resonator materials with the composition Ca(Ca1/4Nb2/4Ti1/4)O3 and Ca(Ca1/4Ta2/4Ti1/4)O3 ceramics and their application in the fabrication of wideband antennas. The microwave dielectric properties of the ceramics were tailored by several techniques such as doping, glass addition and solid solution formations in the complex perovskite A and B-sites with suitable substitutions. Among the wide variety of DRs developed, ceramic resonators with optimum properties were identified to fabricate broadband dielectric resonator loaded microstrip patch antennas. Furthermore, wideband, high permittivity dielectric resonator antennas were fabricated and explored the possibility of tuning their characteristics by modifying the feed line geometries.
Resumo:
The radiation characteristics of a new type of hollow dielectric H-plane sectoral horn antenna are presented. Metallic strips of optimum length are loaded on the H-walls of the sectoral horns. The effects of strip loading for producing square patterns in the H plane are discussed.
Resumo:
This paper presents the design of a new type of corner reflector (CR) antenna and the experimental investigation of its radiation characteristics. The design involves the addition of planar parallel periodic strips to the two sides of a CR antenna. The position, angular orientation, and number of strips have a notable effect on the H-plane radiation characteristics of the antenna. Certain configurations of the new antenna are capable of producing very sharp axial beams with gain on the order of 5 dB over the square corner reflector antenna. A configuration that can provide symmetric twin beams with enhanced gain and reduced half-power beam width (HPBW) is also presented.
Resumo:
The need of miniaturization in the present day communication industry is challenging. In the present scenario, printed antenna technology is highly suitable for wireless communication due to its low profile and other desirable radiation characteristics. Small monopole type antennas are overruled by compact small antennas for present day mobile communication applications. Coplanar waveguides (CPW) are printed on one side of a dielectric substrate. CPW have attracted the attention of antenna designers due to their excellent properties like ease of integration with ‘MMIC’, low cost, wide bandwidth, flexibility towards multiband operation, low radiation leakage and less dispersion. The requirement of omnidirectional coverage, light weight and low cost made these CPW fed antennas a good candidate for wireless applications. The main focus of the thesis is the study of coplanar waveguide transmission line. Rigorous investigations were performed on both the ground plane and signal strip of a coplanar waveguide transmission line to create effective radiation characteristics. Good amount of works have been done to transform CPW line to antenna suitable for mobile phone applications
Resumo:
In the present thesis, possibility of beam shaping of sectoral horns and corner reflector systems'has been studied in detail. The experimental results obtained in the above two cases are compared. As far as the flanged sectoral horns are concerned, the special advantage is that the gain is increased without impairing impedance conditions. An intense study on corner reflector antennas shows that the been broadening or focussing will be possible by adjusting parameters involved. Beam tilting by imposing asymmetries is another interesting property of the systems. A comprehensive study of these fields has been presented in Chapter II. Chapter III is exclusively for describing the experimental techniques used in the present investigation. In Chapter IV, experimental results on flanged sectoral horns and corner reflector eyetses are presented. A comparative analysis of the experimental results obtained with flanged sectoral horns and corner reflector systems is presented in the Chapter V. The similarity and close resemblance in each aspects are shown by presenting typical results from these two eysteee. Theoretical aspects of both types of antennas are considered in Chapter VI. Attempts are made for co-ordinating the theoretical aspects and drawing a final conclusion. In Chapter VII. the final conclusion that the flanged sectoral horn may be considered as a corner reflector system has been drawn. The importance of the conclusions and usefulness are pointed out. The scope for further work in these lines has been indicated.
Resumo:
The need for improved feed systems for large reflector antennas employed in Radio Astronomy and Satellite tracking spurred the interest in horn antenna research in the 1960's. The major requirements were to reduce spill over, cross-polarisation losses,and to enhance the aperture efficiency to the order of about 75-8O%L The search for such a feed culminated in the corrugated horn. The corrugat1e 1 horn triggered widespread interest and enthusiasm, and a large amount of work(32’34’49’5O’52’53’58’65’75’79)has already been done on this type of antennas. The properties of corrugated surfaces has been investigated in detail. It was strongly felt that the flange technique and the use of corrugated surfaces could be merged together to obtain the advantages of both. This is the idea behind the present work. Corrugations are made on the surface of flange elements. The effect of various corrugation parameters are studied. By varying the flange parameters, a good amount of data is collected and analysed to ascertain the effects of corrugated flanges. The measurements are repeated at various frequencies, in the X— and S-bands. The following parameters of the system were studied: (a) beam shaping (b) gain (c) variation of V.S.U.R. (d) possibility of obtaining circularly polarised radiation from the flanged horn. A theoretical explanation to the effects of corrugated flanges is attempted on the basis of the line-source theory. Even though this theory utilises a simplified model for the calculation of radiation patterns, fairly good agreement between the computed pattern and experimental results are observed.