49 resultados para partial discharge detection technology
Resumo:
Spike disease in sandal is generally diagnosed by the manifestation of external symptoms. Attempts have been made to detect the diseased plants by determining the length/breadth ratio of leaves (lyengar, 1961) and histochemical tests using Mann's stain (Parthasarathi et al., 1966), Dienes' stain (Ananthapadmanabha et a/., 1973) aniline blue and Hoechst 33258 (Ghosh et a/., 1985, Rangaswamy, 1995). But most of these techniques are insensitive, indirect detection methods leading to misinterpretation of results. Moreover, to identify disease resistant sandal trees, highly sensitive techniques are needed to detect the presence of the pathogen. In sandal forests, several host plants of sandal like Zizyphus oenop/ea (Fig. 1.3) also exhibit the yellows type disease symptoms. Immunological and molecular assays have to be developed to confirm the presence of sandal spike phytoplasma in such hosts. The major objectives of the present work includes:In situ detection of sandal spike phytoplasma by epifluorescence microscopy and scanning electron microscopy.,Purification of sandal spike phytoplasma and production of polyclonal antibodies.,Amino acid and total protein estimation of sandal spike phytoplasma.,Immunological detection of sandal spike phytoplasma., Molecular detection of sandal spike phytoplasma.,Screening for phytoplasma in host plants of spike disease affected sandal using immunological and molecular techniques.
Resumo:
One of the main challenges in the development of metal-oxide gas sensors is enhancement of selectivity to a particular gas. Currently, two general approaches exist for enhancing the selective properties of sensors. The first one is aimed at preparing a material that is specifically sensitive to one compound and has low or zero cross-sensitivity to other compounds that may be present in the working atmosphere. To do this, the optimal temperature, doping elements, and their concentrations are investigated. Nonetheless, it is usually very difficult to achieve an absolutely selective metal oxide gas sensor in practice. Another approach is based on the preparation of materials for discrimination between several analyte in a mixture. It is impossible to do this by using one sensor signal. Therefore, it is usually done either by modulation of sensor temperature or by using sensor arrays. The present work focus on the characterization of n-type semiconducting metal oxides like Tungsten oxide (WO3), Zinc Oxide (ZnO) and Indium oxide (In2O3) for the gas sensing purpose. For the purpose of gas sensing thick as well as thin films were fabricated. Two different gases, NO2 and H2S gases were selected in order to study the gas sensing behaviour of these metal oxides. To study the problem associated with selectivity the metal oxides were doped with metals and the gas sensing characteristics were investigated. The present thesis is entitled “Development of semiconductor metal oxide gas sensors for the detection of NO2 and H2S gases” and consists of six chapters.
Resumo:
The present study aims at the investigation of the 1ysico—chemical features of a tropical tidal river viz. we Muvattupuzha river. This river is expected to receive Jderate to heavy pollution loads in years to come, from we lone industrial unit, already set up on its bank. ilike other rivers, the geographical disposition of this Lver attains unique importance as regards its dynamics for 3) availability of natural runoff water from catchment :eas, which becomes very heavy during the monsoon season 3) regular steady availability of tail race water from a /dro—electric power station throughout the yearThe study also aims at arriving at the balancing forces of inherent self~purification of the river verses pollution loads from the factory effluents. The investigation period falls ahead of actual pollution occurrence and so the ambient conditions for a period of nearly one-and-a—half years were investigated, the analyses of which providflz to formulate the inter-relations of parameters varying with seasons. Tracer experiments were carried out which revealed the dispersion and dilution characteristics of the river in the vicinity of effluent outfall. The studv covers the trial—cum-capacity production periods of the factory during which effluents of various strength and quantity were discharged into the river; a few computed values arQ’cjmpgrQdl ... with the observed values. The base data along with the profiles of Oxygen sag equation have been utilized fb develop a mathematical model of the river with regard to its water quality
Resumo:
This paper discusses our research in developing a generalized and systematic method for anomaly detection. The key ideas are to represent normal program behaviour using system call frequencies and to incorporate probabilistic techniques for classification to detect anomalies and intrusions. Using experiments on the sendmail system call data, we demonstrate that concise and accurate classifiers can be constructed to detect anomalies. An overview of the approach that we have implemented is provided.
Effectiveness Of Feature Detection Operators On The Performance Of Iris Biometric Recognition System
Resumo:
Iris Recognition is a highly efficient biometric identification system with great possibilities for future in the security systems area.Its robustness and unobtrusiveness, as opposed tomost of the currently deployed systems, make it a good candidate to replace most of thesecurity systems around. By making use of the distinctiveness of iris patterns, iris recognition systems obtain a unique mapping for each person. Identification of this person is possible by applying appropriate matching algorithm.In this paper, Daugman’s Rubber Sheet model is employed for irisnormalization and unwrapping, descriptive statistical analysis of different feature detection operators is performed, features extracted is encoded using Haar wavelets and for classification hammingdistance as a matching algorithm is used. The system was tested on the UBIRIS database. The edge detection algorithm, Canny, is found to be the best one to extract most of the iris texture. The success rate of feature detection using canny is 81%, False Accept Rate is 9% and False Reject Rate is 10%.
Resumo:
Here we investigate the diversity of pathogenic Vibrio species in marine environments close to Suva, Fiji. We use four distinct yet complementary analyses – biochemical testing, phylogenetic analyses, metagenomic analyses and molecular typing – to provide some preliminary insights into the diversity of vibrios in this region. Taken together our analyses confirmed the presence of nine Vibrio species, including three of the most important disease-causing vibrios (i.e. V. cholerae, V. parahaemolyticus and V. vulnificus), in Fijian marine environments. Furthermore, since toxigenic V. parahaemolyticus are present on fish for consumption we suggest these bacteria represent a potential public health risk. Our results from Illumina short read sequencing are encouraging in the context of microbial profiling and biomonitoring. They suggest this approach may offer an efficient and costeffective method for studying the dynamics of microbial diversity in marine environments over time.
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
In this paper a method of copy detection in short Malayalam text passages is proposed. Given two passages one as the source text and another as the copied text it is determined whether the second passage is plagiarized version of the source text. An algorithm for plagiarism detection using the n-gram model for word retrieval is developed and found tri-grams as the best model for comparing the Malayalam text. Based on the probability and the resemblance measures calculated from the n-gram comparison , the text is categorized on a threshold. Texts are compared by variable length n-gram(n={2,3,4}) comparisons. The experiments show that trigram model gives the average acceptable performance with affordable cost in terms of complexity
Resumo:
In this paper, moving flock patterns are mined from spatio- temporal datasets by incorporating a clustering algorithm. A flock is defined as the set of data that move together for a certain continuous amount of time. Finding out moving flock patterns using clustering algorithms is a potential method to find out frequent patterns of movement in large trajectory datasets. In this approach, SPatial clusteRing algoRithm thrOugh sWarm intelligence (SPARROW) is the clustering algorithm used. The advantage of using SPARROW algorithm is that it can effectively discover clusters of widely varying sizes and shapes from large databases. Variations of the proposed method are addressed and also the experimental results show that the problem of scalability and duplicate pattern formation is addressed. This method also reduces the number of patterns produced
Resumo:
Engyodontium album isolated from marine sediment produced protease, which was active at pH 11. Process parameters influencing the production of alkaline protease by marine E. album was optimized. Particle size of <425 mm, 60% initial moisture content and incubation at 25 8C for 120 h were optimal for protease production under solid state fermentation (SSF) using wheat bran. The organism has two optimal pH (5 and 10) for maximal enzyme production. Sucrose as carbon source, ammonium hydrogen carbonate as additional inorganic nitrogen source and amino acid leucine enhanced enzyme production during SSF. The protease was purified and partially characterized. A 16-fold purified enzyme was obtained after ammonium sulphate precipitation and ion-exchange chromatography. Molecular weight of the purified enzyme protein was recorded approximately 38 kDa by SDS-PAGE. The enzyme showed maximum activity at pH 11 and 60 8C. Activity at high temperature and high alkaline pH suggests suitability of the enzyme for its application in detergent industry
Resumo:
Marine fungus BTMFW032, isolated from seawater and identified as Aspergillus awamori, was observed to produce an extracellular lipase, which could reduce 92% fat and oil content in the effluent laden with oil. In this study, medium for lipase production under submerged fermentation was optimized statistically employing response surface method toward maximal enzyme production. Medium with soyabean meal- 0.77% (w/v); (NH4)2SO4-0.1 M; KH2PO4-0.05 M; rice bran oil-2% (v/v); CaCl2-0.05 M; PEG 6000-0.05% (w/v); NaCl-1% (w/v); inoculum-1% (v/v); pH 3.0; incubation temperature 35 8C and incubation period-five days were identified as optimal conditions for maximal lipase production. The time course experiment under optimized condition, after statistical modeling, indicated that enzyme production commenced after 36 hours of incubation and reached a maximum after 96 hours (495.0 U/ml), whereas maximal specific activity of enzyme was recorded at 108 hours (1164.63 U/mg protein). After optimization an overall 4.6- fold increase in lipase production was achieved. Partial purification by (NH4)2SO4 precipitation and ion exchange chromatography resulted in 33.7% final yield. The lipase was noted to have a molecular mass of 90 kDa and optimal activity at pH 7 and 40 8C. Results indicated the scope for potential application of this marine fungal lipase in bioremediation.
Resumo:
Inthis paper,we define partial moments for a univariate continuous random variable. A recurrence relationship for the Pearson curve using the partial moments is established. The interrelationship between the partial moments and other reliability measures such as failure rate, mean residual life function are proved. We also prove some characterization theorems using the partial moments in the context of length biased models and equilibrium distributions
Resumo:
Lower partial moments plays an important role in the analysis of risks and in income/poverty studies. In the present paper, we further investigate its importance in stochastic modeling and prove some characterization theorems arising out of it. We also identify its relationships with other important applied models such as weighted and equilibrium models. Finally, some applications of lower partial moments in poverty studies are also examined
Resumo:
Partial moments are extensively used in literature for modeling and analysis of lifetime data. In this paper, we study properties of partial moments using quantile functions. The quantile based measure determines the underlying distribution uniquely. We then characterize certain lifetime quantile function models. The proposed measure provides alternate definitions for ageing criteria. Finally, we explore the utility of the measure to compare the characteristics of two lifetime distributions
Resumo:
Globalization and liberalization, with the entry of many prominent foreign manufacturers, changed the automobile scenario in India, since early 1990’s. World Leaders in automobile manufacturing such as Ford, General Motors, Honda, Toyota, Suzuki, Hyundai, Renault, Mitsubishi, Benz, BMW, Volkswagen and Nissan set up their manufacturing units in India in joint venture with their Indian counterpart companies, by making use of the Foreign Direct Investment policy of the Government of India, These manufacturers started capturing the hearts of Indian car customers with their choice of technological and innovative product features, with quality and reliability. With the multiplicity of choices available to the Indian passenger car buyers, it drastically changed the way the car purchase scenario in India and particularly in the State of Kerala. This transformed the automobile scene from a sellers’ market to buyers’ market. Car customers started developing their own personal preferences and purchasing patterns, which were hitherto unknown in the Indian automobile segment. The main purpose of this paper is to develop a model with major variables, which influence the consumer purchase behaviour of passenger car owners in the State of Kerala. Though there are innumerable studies conducted in other countries, there are very few thesis and research work conducted to study the consumer behaviour of the passenger car industry in India and specifically in the State of Kerala. The results of the research contribute to the practical knowledge base of the automobile industry, specifically to the passenger car segment. It has also a great contributory value addition to the manufacturers and dealers for customizing their marketing plans in the State