97 resultados para laser induced plasma
Resumo:
In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature
Resumo:
Optical emission studies of C2 molecules in plasma obtained by Nd:YAG laser ablation of graphite in a helium atmosphere are reported for irradiances in the range (1–9:2/ x 1010 W cm−2. The characteristics of the spectral emission intensity from the C2 (Swan band) species have been investigated as functions of the distance from the target, ambient pressure and laser irradiance. Estimates of vibrational temperatures of C2 species under various irradiance conditions are made. Results of measurements performed under different ambient helium gas pressures are also discussed.
Resumo:
Optical emission studies of C2 molecules in plasma obtained by Nd:YAG laser ablation of graphite in a helium atmosphere are reported for irradiances in the range (1–9:2/ x 1010 W cm−2. The characteristics of the spectral emission intensity from the C2 (Swan band) species have been investigated as functions of the distance from the target, ambient pressure and laser irradiance. Estimates of vibrational temperatures of C2 species under various irradiance conditions are made. Results of measurements performed under different ambient helium gas pressures are also discussed.
Resumo:
Biophotonics Laboratory,Centre for Earth Science Studies
Resumo:
N-alkyl-2,6-dimethyl-4(1H)-pyridinones, salts of 4-dimethylaminopyridine and 2-amino-5-nitropyridine are considered to be potential candidates for nonlinear optical (NLO) applications, in particular for the generation of blue-green laser radiation. Single crystals were grown following the slow evaporation technique at constant temperature. Single-shot laserinduced surface damage thresholds in the range 3–10 GW/cm2 were measured using a 18 ns Q-switched Nd:YAG laser. The surface morphologies of the damaged crystals were examined under an optical microscope and the nature of damage identified. The Vicker’s microhardness was determined at a load of 98.07 mN. The thermal transport properties, thermal diffusivity (α), thermal effusivity (e), thermal conductivity (K) and heat capacity (Cp), of the grown crystals were measured by an improved photopyroelectric technique at room temperature. All the results are presented and discussed.
Resumo:
The growth kinetics of an aerial bacterial colony on solid agar media was studied using laser induced fluorescence technique. Fluorescence quenching of Rhodamin B by the bacterial colony was utilized for the study. The lag phase, log phase, and stationary phase of growth curve of bacterial colony was identified by measuring peak fluorescence intensity of dye doped bacterial colony.
Resumo:
Discovery of coherent optical sources four decades ago has revolutionized all fields of scientific development. One of the path breaking applications of lasers is the emergence of various thermo optic techniques to unravel some of the mysteries of light matter interactions.Thermo optic technique is a valuable tool to evaluate optical and thermal properties of materials in solid,liquid and gaseous states .This technique can also be employed effectively in nondestructive quality evaluation. In this doctoral thesis , the use of photothermal techniques based on photoacoustic and photothermal deflection phenomena for the study of certain class of photonics materials such as semiconductors, nano metal dispersed ceramics, composites of conducting polymers and liquid crystals is elaborated.
Resumo:
Over the past few years, a little word with big potential has been rapidly entering into the world's consciousness-'nano'. Nanoscience and technology is a multidisciplinary field, involving the fabrication and understanding of matter at the finest level of a few nanomters.This thesis is about the synthesis and laser induced studies of nanosized ZnO,a versatile material with a wide range of applications.After synthesizing colloids and films of nano ZnO,the samples are studied using different optical methods.Interactions of intense laser beams with nanosized particles are found to open up many interesting scenarios with possible applications in the field of photonics.
Resumo:
The dynamics of diffusion of electrons and ions from the laser-produced plasma from a multielement superconducting material, namely YBa2Cu3O7, using a Q-switched Nd:YAG laser is investigated by time-resolved emission-spectroscopic techniques at various laser irradiances. It is observed that beyond a laser irradiance of 2.6 \xC3\x97 1011 W cm-2, the ejected plume collectively drifts away from the target with a sharp increase in velocity to 1.25 \xC3\x97 106 cm s-1, which is twice its velocity observed at lower laser irradiances. This sudden drift apparently occurs as a result of the formation of a charged double layer at the external plume boundary. This diffusion is collective, that is, the electrons and ions inside the plume diffuse together simultaneously and hence it is similar to the ambipolar diffusion of charged particles in a discharge plasma
Resumo:
Laser-induced plasma generated from a silver target under partial vacuum conditions using the fundamental output of nanosecond duration from a pulsed Nd:yttrium aluminum garnet laser is studied using a Langmuir probe. The time of flight measurements show a clear twin peak distribution in the temporal profile of electron emission. The first peak has almost the same duration as the laser pulse while the second lasts for several microseconds. The prompt electrons are energetic enough ('60 eV) to ionize the ambient gas molecules or atoms. The use of prompt electron pulses as sources for electron impact excitation is demonstrated by taking nitrogen, carbon dioxide, and argon as ambient gases.
Resumo:
Two-photon absorption in methanol solutions of Rhodamine 6G is investigated by photoacoustics using the second harmonic of a pulsed Nd:YAG laser. Competition between one-photon and two-photon processes is observed, depending critically on the sample concentration and input light flux.
Resumo:
A pulsed Nd-YAG laser beam is used to produce a transient refractive index gradient in air adjoining the plane surface of the sample material. This refractive index gradient is probed by a continuous He-Ne laser beam propagating parallel to the sample surface. The observed deflection signals produced by the probe beam exhibit drastic variations when the pump laser energy density crosses the damage threshold for the sample. The measurements are used to estimate the damage threshold for a few polymer samples. The present values are found to be in good agreement with those determined by other methods.
Resumo:
YBa2Cu307 target was laser ablated, and the time-of-flight (TOF) distributions of Y, Y+., and YO in the resultant plasma were investigated as functions of distance from the target and laser energy density using emission spectroscopy. Up to a short distance from the target (-1.5 cm), TOF distributions show twin peaks for Y and YO, while only single-peak distribution is observed for Y+. At greater distances (>1.5 cm) all of them exhibit single-peak distribution. The twin peaks are assigned to species corresponding to those generated directly/m the vicinity of target surface and to those generated from collisional/recombination process.
Resumo:
Time resolved optical emission spectroscopy is employed to study the expansion dynamics of C2 species in a graphite plasma produced during the Nd : YAG ablation. At low laser fluences a single peak distribution with low kinetic energy is observed. At higher fluences a twin peak distribution is found. It has been noted that these double peak time of flight distribution splits into a triple peak structure at distances >_ 17mm from the target surface. The reason for the occurrence of multiple peak is due to different formation mechanisms of C2 species
Resumo:
Time and space resolved spectroscopic studies of the molecular band emission from C2 are performed in the plasma produced by irradiating a graphite target with 1:06 m radiation from a Q-switched Nd:YAG laser. High-resolution spectra are recorded from points located at distances up to 15 mm from the target in the presence of ambient helium gas pressure. Depending on the laser irradiance, time of observation and position of the sampled volume of the plasma the features of the emission spectrum are found to change drastically. The vibrational temperature and population distribution in the different vibrational levels of C2 molecules have been evaluated as a function of distance for different time delays and laser irradiance. It is also found that the vibrational temperature of C2 molecules decreases with increasing helium pressure.