47 resultados para dredge-and-fill activity
Resumo:
The surface acidity and basicity of ternary oxides of AI, Ce and Dy have been determined using a set of Hammett indicators. The data have been correlated with the catalytic activity of these oxides towards the liquid phase reduction of cyclohexanone in 2-propanol. The reaction is favoured by the higher basicity of the ternary oxide.
Resumo:
The surface acidity/basicity of binary oxides of Zr and La and the ternary oxides of Zr, La and Al are reported. The data have been correlated with their catalytic activity towards liquid phase reduction of cyclohexanone.
Resumo:
Surface acidity/Basicity of mixed oxides of La and Zn activated at three different temperatures were determined. The data have been correlated with the catalytic activity for liquid phase reduction of cyclohexanone in isopropanol.
Resumo:
Chromia loaded sulfated titania has been synthesized via sol–gel route with different chromia loadings. These catalysts are characterized using conventional techniques such as XRD analysis, FTIR analysis, surface area and pore volume measurements, EDX, SEM and UV–Vis diffuse reflectance spectral analysis. Acidity is measured using spectrophotometric monitoring of adsorption of perylene, thermogravimetric desorption of 2,6-dimethylpyridine and temperature programmed desorption of ammonia. Activity studies are done in the liquid phase. It has been concluded that Lewis acid sites are responsible for the benzylation of arenes with benzyl chloride.
Resumo:
A series of rare-earth neodymia supported vanadium oxide catalysts with various V205 loadings ranging from 3 to 15 wt.% were prepared by the wet impregnation method using ammonium metavanadate as the vanadium precursor. The nature of vanadia species formed on the support surface is characterized hy a series of different physicochemical techniques like X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FTIR). BET surface area, diffuse reflectance UV-vis spectroscopy (DR UV-vis), thermal analysis (TG-DTG/DTA) and SEM. The acidity of the prepared systems were verified by the stepwise temperature programmed desorprion of ammonia (NH3-TPD) and found that the total acidity gets increased with the percentage of vanadia loading. XRD and FT1R results shows the presence of surface dispersed vanadyl species at lower loadings and the formation of higher vanadate species as the percentage composition of vanadia is increased above 9 wt.%. The low surface area of the support. calcination temperature and the percentage of vanadia loading are found to influence the formation of higher vanadia species. The catalytic activity of the V205-Nd203 catalysts was probed in the liquid phase hydroxylation of phenol and the result show that the present catalysts are active at lower vanadia concentrations.
Resumo:
In this thesis we report the synthsis and characterisation of new transition metal complexes of Pd(II),Cu(II),Ru(II) and Ir(III) of Schiff bases derived from quinoxaline-2-carboxaldehyde/3-hydroxyquinoxaline-2-carboxaldehyde and 5-aminoindazole.6-aminoindazole or 8-aminoquinoline.The complexes have been characterised by spectral and analytical data.Pd(II) and Cu(II) form square planar complexes and Ru(III) and Ir(III) form ctahedral complexes with these Schiff bases.The DNA binding properties of theses synthesised complexes have been studied by various methods including electronic absoption spectroscopy,cyclic voltammetry,different pulse voltammetry and circular dichroism spectra were used.Gel electrophoresis experiments were also performed to investigate the DNA cleavage of theses complexes.Furthermore Ru(III) and Ir(III) complexes find application as oxidation and hydogenation catalsts. The studies on catalytic activities has been presented.The metal complexes presented in this thesis assure significance as they contribute to the development of new DNA binding agents and antibacterial and anticancer drugs.
Resumo:
Schiff base complexes of transition metal ions have played a significant role in coordination chemistry.The convenient route of synthesis and thermal stability of Schiff base complexes have contributed significantly for their possible applications in catalysis,biology,medicine and photonics.Significant variations in cataltytic activity with structure and type are observed for these complexes.The thesis deals with synthsis and characterization of transition metal complexes of quinoxaline based Schiff base ligands and their catalytic activity study.The Schiff bases synthesized in the present study are quinoxaline-2-carboxalidine-2-amino-5-methylphenol,3-hydroxyquinoxaline-2-carboxalidine-2-amino-5-methylphenol,quinoxaline-2-aminothiophenol.They provide great structural diversity during complexation.To the best of our knowledge, the transition metal complexes of quinoxaline based Schiff bases are poorly utilised in academic and industrial research.
Resumo:
Department of Applied Chemistry, Cochin University of Science and Technology
Resumo:
The prime intension of the present work was a synthetic investigation of the preparation, surface properties and catalytic activity of some transition metal substituted copper chromite catalysts. Homogeneous co-precipitation method is employed for the preparation of catalysts. Since the knowledge about the structure and composition of the surface is critical in explaining the reactivity and selectivity of a solid catalyst. a systematic investigation of the physico-chemical properties of the prepared systems was carried out. The catalytic activity of these systems has also been measured in several oxidation reactions of industrial as well as environmental relevance. The thesis is dedicated to several aspects of chromite spinels giving emphasis to its preparation, characterization and catalytic performance towards oxidation reactions.
Resumo:
This thesis is mainly concerned with the synthesis and characterisation of new simple and zeolite encapsulated transition metal (manganese(II),nickel(II),and copper(II)complexes of quinoxaline based double Schiff base ligands.Theses ligands are N,N'-bis(quinoxaline-2-carboxalidene)hydrazine,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminoethane,N,N'-bis(quinoxaline-2-carboxalidene)-1,3-diamonopropane,N,N'-bis(quinoxaline-2-carboxalidene)-1,4-diaminobutane,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminocyclohexane and N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminobenzene.The Schiff base ligands have been characterised by spectral and single crystal XRD studies.Theses ligands provide great structural diversity during complexation.Mn(II) and Ni(II) form octahedral with these Schiff bases,whereas Cu(II) forms both octahedral and tetrahedral complexes.Studies on the biological and Catalytic activity of the copper(ll) complexes are also presented in this thesis.
Resumo:
The work presented in this thesis is mainly centered on the synthesis and characterization of some encapsulated transition metal complexes and the catalytic activity of the synthesized complexes in certain organic reactions.thesis deals with the catalytic activity of ruthenium-exchanged zeolite and the zeolite encapsulated complexes of SSC, SOD, SPD, AA, ABA, DMG, PCO, PCP, CPO and CPP in the hydroxylation of phenol using hydrogen peroxide. The products were analyzed with a GC to determine the percentage conversion and the chromatograms indicate the presence of different products like hydroquinone, catechol,benzoquinone, benzophenone etc. The major product formed is hydroquinone. From the screening studies, RuYSSC was found to be the most effective catalyst for phenol hydroxylation with 94.4% conversion and 76% hydroquinone selectivity. The influence of different factors like reaction time, temperature, amount of catalyst, effect of various solvents and oxidant to substrate ratio in the catalytic activity were studied in order to find out the optimum conditions for the hydroxylation reaction. The influence of time on the percentage conversion of phenol was studied by conducting the reactions for different durations varying from one hour to four hours. There is an induction period for all the complexes and the length of the induction period depends on the nature of the active components. Though the conversion of phenol and selectivity for hydroquinone. increases with time, the amount of benzoquinone formed decreases with time. This is probably due to the decomposition of benzoquinone formed during the initial stages of the reaction into other degradation products like benzophenones. The effect of temperature was studied by carrying out the reaction at three different temperatures, 30°C, 50°C and 70°C. Reactions carried at temperatures higher than 70°C result either in the decomposition of the products or in the formation of tarry products. Activity increased with increase in the amount of the catalyst up to a certain level. However further increase in the weight of the catalyst did not have any noticeable effect on the percentage conversion. The catalytic studies indicate that the oxidation reaction increases with increase in the volume of hydrogen peroxide till a certain volume. But further increase in the volume of H202 is detrimental as some dark mass is obtained after four hours of reaction. The catalytic activity is largely dependent on the nature of the solvent and maximum percentage conversion occurred when the solvent used is water. The intactness of the complexes within the zeolite cages enhances their possibility of recycling and the activities of the recycled catalysts show only a slight decrease when compared to the fresh samples .
Resumo:
Strychnine, the major alkaloid present in Strychnos nuxvomica seeds has been reported to stimulate the entire central nervous system with preference for the spinal cord. It is a powerful convulsant and because of this property, it is an important pharmacological tool as it plays a unique role as an inhibitor of post synaptic inhibitory impulses. It is useful to study inhibitory transmitter and receptor types. However, because of its extreme toxicity, strychnine does not have any therapeutic application in the Western system of medicine. The present work was undertaken with a view to obtaining strychnine derivatives having CNS stimulating properties but with sufficiently low toxicity so that they may eventually find some application in medicine. As strychnine is isolated from the locally available strychnos Nugvomica seeds, it’s possible utilization in therapeutics will have considerable commercial significance. This work tries to provide several new compounds which are significantly less toxic than strychnine and its N—oxide as shown from the pharmacological Studio As they also possessed CNS stimulating properties, they are well suited for further screening to assess their potential as valuable therapeutic agents.
Resumo:
The rare earths have provided fascinating field for chemists confronted with problems of their separation and purification. The rare earths become available in relatively pure form in recent years due to the development of efficient separation methods, largely as a byproduct of the atomic energy programmes of various countries. The rare earths often called lanthanides from La (Z=57) to Lu (Z=7l) display subtle variation of properties through the series, while the differences become appreciable for the elements that are farther apart.
Resumo:
Emergence of antibiotic resistance among aquaculture pathogens has made it necessary to look into environment friendly, effective and sustainable methods such as probiotic and immunostimulants among others.. In the present study, LAB were isolated from the gut of fish species namely Rastrelliger kanagurta and analyzed for their antibacterial activity against various fish, shrimp and human pathogens. Different LAB species such as Lactobacillus plantarum, L. bulgaricus, L. brevis and L. viridiscens were encountered in the gut of R. kanagurta. Several strains showed good activity against fish, shrimp and human pathogens. LAB from the gut of such marine species may be developed as possible probiont for environment friendly health management of fresh water, estuarine and marine species currently exploited in aquaculture
Resumo:
TThe invention of novel antibiotics and other bioactive microbial metabolites continues to be an important aim in new drug discovery programmes. Actinomycetes have the potential to synthesize lots of diverse biologically vigorous secondary metabolites and in the last decades actinomycetes became the most productive source for antibiotics. Therefore in the present study we analyze the antibacterial activity of the actinomycetes isolated from grassland soil samples of Tropical Montane forest. A total of 33 actinomycete strains isolated were characterized and screened for antibacterial activities using well diffusion method against six specific pathogenic organisms. Identification of the isolates revealed that the majority of them were belonging to Streptomycetes followed by Nocardia, Micromonospora, Pseudonocardia, Streptosporangium, Nocardiopsis and Saccharomonospora. Among the 33 isolates, Gr1 strain showed antagonistic activity against all checked pathogens. Nine strains showed antibacaterial activity against Listeria, Vibrio cholera, Bacillus cereus, Staphylococcus aureus and Salmonella typhi and only 2 strains (Gr1and Gr25) showed antagonism to E. coli. The overall percentage of activity of actinomycetes isolates against each pathogenic bacterium was also calculated. While 63.63% of the actinomycetes were antagoinistic against Listeria, Vibrio cholerae, and Bacillus cereus, 60.6% of them were antagonistic to Staphylococcus aureus. Very few isolates (6.06%) showed antibacterial activity against E. coli. In general most of the actinomycetes isolates were antagonistic to grampositive bacteria such as Listeria, Bacillus and Staphylococcus than Gram-negative bacteria Vibrio cholerae, E. coli and Salmonella