87 resultados para catalytic activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface acidity/Basicity of mixed oxides of La and Zn activated at three different temperatures were determined. The data have been correlated with the catalytic activity for liquid phase reduction of cyclohexanone in isopropanol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of rare-earth neodymia supported vanadium oxide catalysts with various V205 loadings ranging from 3 to 15 wt.% were prepared by the wet impregnation method using ammonium metavanadate as the vanadium precursor. The nature of vanadia species formed on the support surface is characterized hy a series of different physicochemical techniques like X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FTIR). BET surface area, diffuse reflectance UV-vis spectroscopy (DR UV-vis), thermal analysis (TG-DTG/DTA) and SEM. The acidity of the prepared systems were verified by the stepwise temperature programmed desorprion of ammonia (NH3-TPD) and found that the total acidity gets increased with the percentage of vanadia loading. XRD and FT1R results shows the presence of surface dispersed vanadyl species at lower loadings and the formation of higher vanadate species as the percentage composition of vanadia is increased above 9 wt.%. The low surface area of the support. calcination temperature and the percentage of vanadia loading are found to influence the formation of higher vanadia species. The catalytic activity of the V205-Nd203 catalysts was probed in the liquid phase hydroxylation of phenol and the result show that the present catalysts are active at lower vanadia concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we report the synthsis and characterisation of new transition metal complexes of Pd(II),Cu(II),Ru(II) and Ir(III) of Schiff bases derived from quinoxaline-2-carboxaldehyde/3-hydroxyquinoxaline-2-carboxaldehyde and 5-aminoindazole.6-aminoindazole or 8-aminoquinoline.The complexes have been characterised by spectral and analytical data.Pd(II) and Cu(II) form square planar complexes and Ru(III) and Ir(III) form ctahedral complexes with these Schiff bases.The DNA binding properties of theses synthesised complexes have been studied by various methods including electronic absoption spectroscopy,cyclic voltammetry,different pulse voltammetry and circular dichroism spectra were used.Gel electrophoresis experiments were also performed to investigate the DNA cleavage of theses complexes.Furthermore Ru(III) and Ir(III) complexes find application as oxidation and hydogenation catalsts. The studies on catalytic activities has been presented.The metal complexes presented in this thesis assure significance as they contribute to the development of new DNA binding agents and antibacterial and anticancer drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schiff base complexes of transition metal ions have played a significant role in coordination chemistry.The convenient route of synthesis and thermal stability of Schiff base complexes have contributed significantly for their possible applications in catalysis,biology,medicine and photonics.Significant variations in cataltytic activity with structure and type are observed for these complexes.The thesis deals with synthsis and characterization of transition metal complexes of quinoxaline based Schiff base ligands and their catalytic activity study.The Schiff bases synthesized in the present study are quinoxaline-2-carboxalidine-2-amino-5-methylphenol,3-hydroxyquinoxaline-2-carboxalidine-2-amino-5-methylphenol,quinoxaline-2-aminothiophenol.They provide great structural diversity during complexation.To the best of our knowledge, the transition metal complexes of quinoxaline based Schiff bases are poorly utilised in academic and industrial research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Applied Chemistry, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prime intension of the present work was a synthetic investigation of the preparation, surface properties and catalytic activity of some transition metal substituted copper chromite catalysts. Homogeneous co-precipitation method is employed for the preparation of catalysts. Since the knowledge about the structure and composition of the surface is critical in explaining the reactivity and selectivity of a solid catalyst. a systematic investigation of the physico-chemical properties of the prepared systems was carried out. The catalytic activity of these systems has also been measured in several oxidation reactions of industrial as well as environmental relevance. The thesis is dedicated to several aspects of chromite spinels giving emphasis to its preparation, characterization and catalytic performance towards oxidation reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is mainly concerned with the synthesis and characterisation of new simple and zeolite encapsulated transition metal (manganese(II),nickel(II),and copper(II)complexes of quinoxaline based double Schiff base ligands.Theses ligands are N,N'-bis(quinoxaline-2-carboxalidene)hydrazine,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminoethane,N,N'-bis(quinoxaline-2-carboxalidene)-1,3-diamonopropane,N,N'-bis(quinoxaline-2-carboxalidene)-1,4-diaminobutane,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminocyclohexane and N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminobenzene.The Schiff base ligands have been characterised by spectral and single crystal XRD studies.Theses ligands provide great structural diversity during complexation.Mn(II) and Ni(II) form octahedral with these Schiff bases,whereas Cu(II) forms both octahedral and tetrahedral complexes.Studies on the biological and Catalytic activity of the copper(ll) complexes are also presented in this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this thesis is mainly centered on the synthesis and characterization of some encapsulated transition metal complexes and the catalytic activity of the synthesized complexes in certain organic reactions.thesis deals with the catalytic activity of ruthenium-exchanged zeolite and the zeolite encapsulated complexes of SSC, SOD, SPD, AA, ABA, DMG, PCO, PCP, CPO and CPP in the hydroxylation of phenol using hydrogen peroxide. The products were analyzed with a GC to determine the percentage conversion and the chromatograms indicate the presence of different products like hydroquinone, catechol,benzoquinone, benzophenone etc. The major product formed is hydroquinone. From the screening studies, RuYSSC was found to be the most effective catalyst for phenol hydroxylation with 94.4% conversion and 76% hydroquinone selectivity. The influence of different factors like reaction time, temperature, amount of catalyst, effect of various solvents and oxidant to substrate ratio in the catalytic activity were studied in order to find out the optimum conditions for the hydroxylation reaction. The influence of time on the percentage conversion of phenol was studied by conducting the reactions for different durations varying from one hour to four hours. There is an induction period for all the complexes and the length of the induction period depends on the nature of the active components. Though the conversion of phenol and selectivity for hydroquinone. increases with time, the amount of benzoquinone formed decreases with time. This is probably due to the decomposition of benzoquinone formed during the initial stages of the reaction into other degradation products like benzophenones. The effect of temperature was studied by carrying out the reaction at three different temperatures, 30°C, 50°C and 70°C. Reactions carried at temperatures higher than 70°C result either in the decomposition of the products or in the formation of tarry products. Activity increased with increase in the amount of the catalyst up to a certain level. However further increase in the weight of the catalyst did not have any noticeable effect on the percentage conversion. The catalytic studies indicate that the oxidation reaction increases with increase in the volume of hydrogen peroxide till a certain volume. But further increase in the volume of H202 is detrimental as some dark mass is obtained after four hours of reaction. The catalytic activity is largely dependent on the nature of the solvent and maximum percentage conversion occurred when the solvent used is water. The intactness of the complexes within the zeolite cages enhances their possibility of recycling and the activities of the recycled catalysts show only a slight decrease when compared to the fresh samples .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rare earths have provided fascinating field for chemists confronted with problems of their separation and purification. The rare earths become available in relatively pure form in recent years due to the development of efficient separation methods, largely as a byproduct of the atomic energy programmes of various countries. The rare earths often called lanthanides from La (Z=57) to Lu (Z=7l) display subtle variation of properties through the series, while the differences become appreciable for the elements that are farther apart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of catalysts in chemical and refining processes has increased rapidly since 1945, when oil began to replace coal as the most important industrial raw material. Catalysis has a major impact on the quality of human life as well as economic development. The demand for catalysts is still increasing since catalysis is looked up as a solution to eliminate or replace polluting processes. Metal oxides represent one of the most important and widely employed classes of solid catalysts. Much effort has been spent in the preparation, characterization and application of metal oxides. Recently, great interest has been devoted to the cerium dioxide (CeO2) containing materials due to their broad range of applications in various fields, ranging from catalysis to ceramics, fuel cell technologies, gas sensors, solid state electrolytes, ceramic biomaterials, etc., in addition to the classical application of CeO2 as an additive in the so-called three way catalysts (TWC) for automotive exhaust treatment. Moreover, it can promote water gas shift and steam reforming reactions, favours catalytic activity at the interfacial metal-support sites. The solid solutions of ceria with Group IV transitional-metals deserve particular attention for their applicability in various technologically important catalytic processes. Mesoporous CeO2−ZrO2 solid solutions have been reported to be employed in various reactions which include CO oxidation, soot oxidation, water-gas shift reaction, and so on. Inspired by the unique and promising characteristics of ceria based mixed oxides and solid solutions for various applications, we have selected ceria-zirconia oxides for our studies. The focus of the work is the synthesis and investigation of the structural and catalytic properties of modified and pure ceria-zirconia mixed oxide.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Physico-chemical characterization of DY203/V2O5 systems prepared through wet impregnation method has been carried out using various techniques like EDX, XRD, FTIR. thermal studies, BET surface area, pore volume and pore size distribution analysis. The amount of vanadia incorporated has been found to influence the surface properties of dysprosia. The spectroscopic results combining with X-ray analysis reveal that vanadia species exist predominantly as isolated amorphous vanadyl units along with crystalline dysprosium orthovanadate. Basicity studies have been conducted by adsorption of electron acceptors and acidity and acid strength distribution by temperature programmed desorption of ammonia. Cyclohexanol decomposition has been employed as a chemical probe reaction to examine the effect of vanadia on the acid base property of Dy2O3. Incorporation of vanadia titrates thc Lewis acid and base sites of Dy2O3, while an enhancement of Bronsted acid sites has been noticed. Data have been correlated with the catalytic activity of these oxides towards the vapour phase methylation of phenol

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The catalyst compositions of the Zn1−xCOxFe2O4 (x= 0, 0.2, 0.5, 0.8 and 1.0) spiel series possessing ‘x’ values, x less than or equal to 0.5, are unique for selective N-monomethylation of aniline using methanol as the alkylating agent. Since dimethyl carbonate (DMC) is another potential non-toxic alkylating agent, alkylation of aniline was investigated over various Zn–Co ferrites using DMC as the alkylating agent. The merits and demerits of the two alkylating agents are compared. Catalytic activity followed a similar trend with respect to the composition of the ferrospinel systems. DMC is active at comparatively low temperature, where methanol shows only mild activity. However, on the selectivity basis, DMC as an alkylating agent could not compete with methanol, since the former gave appreciable amounts of N,N-dimethylaniline (NNDMA) even at low temperature where methanol gave nearly 99% N-methylaniline (NMA) selectivity. As in the case of methanol, DMC also did not give any C-alkylated products.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Department of Applied Chemistry, Cochin University of Science and Technology

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rice husk silica was utilized as the promoter of ceria for preparing supported vanadia catalysts. Effect of vanadium content was investigated with 2–10 wt.% V2O5 loading over the support. Structural characterization of the catalysts was done by various techniques like energy dispersive X-ray (EDX), X-ray diffraction (XRD), BET surface area, thermal analysis (TGA/DTA), FT-infrared spectroscopy (FT-IR), UV–vis diffused reflectance spectroscopy (DR UV–vis), electron paramagnetic spectroscopy (EPR) and solid state magnetic resonance spectroscopies (29Si and 51V MASNMR). Catalytic activity was studied towards liquid-phase oxidation of benzene. Surface area of ceria enhanced upon rice husk silica promotion, thus makes dispersion of the active sites of vanadia easier. Highly dispersed vanadia was found for low V2O5 loading and formation of cerium orthovanadate (CeVO4) occurs as the loading increases. Spectroscopic investigation clearly confirms the formation of CeVO4 phase at higher loadings of V2O5. The oxidation activity increases with vanadia loading up to 8 wt.% V2O5, and further increase reduces the conversion rate. Selective formation of phenol can be attributed to the presence of highly dispersed active sites of vanadia over the support.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One-pot acetalizations of cyclohexanone. acetophenone and benzophenone were carried out using methanol over H-montmorillonite clay (a mesoporous material). silica, alumina, and different zeolites such as HFAU-Y.HBeta, H-ZSM-5, and H-mordenite. In all the cases a single product-the corresponding dimethylacetal-was obtained in high yields. Hemiacetal formation was not observed with any catalyst. A comparison of catalytic activity indicated that montmorillonite K-10 is the most active catalyst for the reaction. As evidenced by the reaction time studies, the catalyst decay is greater over the zeolite catalyst than over the clay.