39 resultados para Weighted graphs
Resumo:
Given a non empty set S of vertices of a graph, the partiality of a vertex with respect to S is the di erence between maximum and minimum of the distances of the vertex to the vertices of S. The vertices with minimum partiality constitute the fair center of the set. Any vertex set which is the fair center of some set of vertices is called a fair set. In this paper we prove that the induced subgraph of any fair set is connected in the case of trees and characterise block graphs as the class of chordal graphs for which the induced subgraph of all fair sets are connected. The fair sets of Kn, Km;n, Kn e, wheel graphs, odd cycles and symmetric even graphs are identi ed. The fair sets of the Cartesian product graphs are also discussed
Resumo:
The median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian was studied. Here one maximizes the average distance to the clients. In this paper the mixed case is studied. Clients are represented by a profile, which is a sequence of vertices with repetitions allowed. In a signed profile each element is provided with a sign from f+; g. Thus one can take into account whether the client prefers the facility (with a + sign) or rejects it (with a sign). The graphs for which all median sets, or all antimedian sets, are connected are characterized. Various consensus strategies for signed profiles are studied, amongst which Majority, Plurality and Scarcity. Hypercubes are the only graphs on which Majority produces the median set for all signed profiles. Finally, the antimedian sets are found by the Scarcity Strategy on e.g. Hamming graphs, Johnson graphs and halfcubes
Resumo:
A periphery transversal of a median graph G is introduced as a set of vertices that meets all the peripheral subgraphs of G. Using this concept, median graphs with geodetic number 2 are characterized in two ways. They are precisely the median graphs that contain a periphery transversal of order 2 as well as the median graphs for which there exists a profile such that the remoteness function is constant on G. Moreover, an algorithm is presented that decides in O(mlog n) time whether a given graph G with n vertices and m edges is a median graph with geodetic number 2. Several additional structural properties of the remoteness function on hypercubes and median graphs are obtained and some problems listed
Resumo:
In this article we introduce some structural relationships between weighted and original variables in the context of maintainability function and reversed repair rate. Furthermore, we prove some characterization theorems for specific models such as power, exponential, Pareto II, beta, and Pearson system of distributions using the relationships between the original and weighted random variables
Resumo:
In this paper, we study some dynamic generalized information measures between a true distribution and an observed (weighted) distribution, useful in life length studies. Further, some bounds and inequalities related to these measures are also studied
Resumo:
In this paper the class of continuous bivariate distributions that has form-invariant weighted distribution with weight function w(x1, x2) ¼ xa1 1 xa2 2 is identified. It is shown that the class includes some well known bivariate models. Bayesian inference on the parameters of the class is considered and it is shown that there exist natural conjugate priors for the parameters
Resumo:
In this paper, a family of bivariate distributions whose marginals are weighted distributions in the original variables is studied. The relationship between the failure rates of the derived and original models are obtained. These relationships are used to provide some characterizations of specific bivariate models
Resumo:
Recently, reciprocal subtangent has been used as a useful tool to describe the behaviour of a density curve. Motivated by this, in the present article we extend the concept to the weighted models. Characterization results are proved for models viz. gamma, Rayleigh, equilibrium, residual lifetime, and proportional hazards. An identity under weighted distribution is also obtained when the reciprocal subtangent takes the form of a general class of distributions. Finally, an extension of reciprocal subtangent for the weighted models in the bivariate and multivariate cases are introduced and proved some useful results
Resumo:
Centrality is in fact one of the fundamental notions in graph theory which has established its close connection with various other areas like Social networks, Flow networks, Facility location problems etc. Even though a plethora of centrality measures have been introduced from time to time, according to the changing demands, the term is not well defined and we can only give some common qualities that a centrality measure is expected to have. Nodes with high centrality scores are often more likely to be very powerful, indispensable, influential, easy propagators of information, significant in maintaining the cohesion of the group and are easily susceptible to anything that disseminate in the network.