122 resultados para Rubber goods
Resumo:
ABSTRACT: Zinc salts of ethyl, isopropyl, and butyl xanthates were prepared in the laboratory. They were purified by reprecipitation and were characterized by IR, NMR, and thermogravimetric analysis techniques. The melting points were also determined. The rubber compounds with different xanthate accelerators were cured at temperatures from 30 to 150°C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density, elongation at break, and modulus at 300% elongation were evaluated. The properties showed that all three xanthate accelerators are effective for room temperature curing.
Resumo:
ABSTRACT: Rubber seed oil was used as a multipurpose ingredient in natural rubber (NR) and styrene butadiene rubber (SBR) compounds. The study shows that the oil, when substituted for conventional plasticiser, imparts excellent mechanical properties to NR and SBR vulcanizates. Further, it also improves aging resistance, reduces cure time, increases abrasion resistance and flex resistance, and reduces blooming.
Resumo:
Blends of styrene butadiene rubber (SBR) with maleic anhydride grafted whole tire reclaim (MA-g-WTR) have been prepared and the cure and mechanical properties have been studied with respect to the reclaim content. The grafting was carried out in the presence of dicumylperoxide (DCP) in a Brabender Plasticorder at 150'C. The presence of anhydride group on the WTR was confirmed by infrared spectrometry (IR) study. The properties were compared with those of the blends containing unmodified WTR. Though the cure time was marginally higher, the mechanical properties of the blends containing grafted WTR were better than that of the unmodified blends.
Resumo:
Blends of nitrile rubber and reclaimed rubber containing different levels of a coupling agent, Si 69 (bis(3- triethoxysilyl propyl)(tetrasulphide) were prepared and the cure characteristic's and mechanical properties were studied. Optimum loading of Si-69 was found to be a function of blend ratio. 3 phi- of Si 69 in a 70:30. Blend was found to be the optimum combination with respect to the mechanical properties. The rate and state of cure were also affected bv the conp/ing agent. Tensile strength, tear strength and abrasion resistance were improved in the presence of coupling agent. While the state of cure improved, the cure rate and scorch time decreased with increasing silane content. Ageing studies showed that the blends containing the coupling agent were inferior to the unmodified blends.
Resumo:
Chloroprene rubber was blended with whole tire reclaimed rubber (WTR) in presence of different levels of a coupling agent Si69 [bis- (3-(triethoxysilyl)propy1)tetrasuIfide] and the cure characteristics and mechanical properties were studied. The rate and state of cure were also affected by the coupling agent. While the cure time was increased, the cure rate and scorch time were decreased with increasing silane content. Tensile strength, tear strength, and abrasion resistance were improved in the presence of coupling agent. Compression set and resilience were adversely affected in presence of silane-coupling agent.Aging studies showed that the blends containing the coupling agent were inferior to the unmodified blends.
Resumo:
Blends of Acrylonitrile rubber with Maleic anhydride grafted Whole Tyre Reclaim WTR (MA-g-WTR) have been prepared and the cure and mechanical properties have been studied with respect to reclaim content. Control compounds containing unmodified WTR were also prepared for comparison. Grafting was confirmed by IR studies. Blends containing grafted WTR showed higher minimum torque and (max-min) torque. They also showed longer cure time, scorch time and lower cure rate. Grafting of the WTR with maleic anhydride also resulted in the improved tensile strength, abrasion resistance, compression set and resilience. However, the heat build up under dynamic loading was marginally higher for the blends containing grafted reclaimed rubber.
Resumo:
Mechanical properties and thermal degradation of natural rubber compounds containing castor oil were studied to evaluate its suitability as plasticizer. Naphthenic oil was used as a reference plasticizer. The cure time was marginally lower in the case of castor oil mixes, probably due to the presence offree fatty acids in it. The tear strength and modulus were better in the case of mixes containing castor oil, while most of the other mechanical properties were comparable to the mixes containing naphthenic oil. The heat build up and compression set were higher than that of the naphthenic oil mixes. Thermal studies showed an increase of 8 °C in the temperature of initiation of degradation and an increase of 6 °C in the temperature at which the peak rate of degradation occurred. The peak rate of degradation was comparable to that of the reference compound
Resumo:
Mechanical properties and thermal degradation characteristics of natural rubber compounds captaining coconut oil were compared with that of a control compound containing naphthenic oil. Cure time was marginally lower in the case of coconut oil mixes, probably due to the presence of free fatty acids. Tensile strength , tear strength, resilience and abrasion resistance were better than the naphthenic oil-based compounds . Compression set and hardness were marginally inferior The coconut oil mixes had a crosslink density comparable to that of the reference compound. Thermal studies showed that the temperature of initiation of degradation was increased by 10°C and the temperature at which the peak rate of degradation occured was increased by 7°C. The peak rate of degradation was compa rable to the control compound.
Characterization of Short Nylon-6 Fiber/Acrylonitrile Butadiene Rubber Composite by Thermogravimetry
Resumo:
The thermal degradation of short nylon-6 fiber reinforced acrylonitrile butadiene rubber (NBR) composites with and without epoxy-based bonding agent has been studied by thermogravimetric analysis (TGA). It was found that the onset of degradation shifted from 330.5 to 336.1°C in the presence of short nylon fiber, the optimum fiber loading being 20 phr. The maximum rate of degradation of the composites was lower than that of the unfilled rubber compound, and it decreased with increase in fiber concentration. The presence of epoxy resin-based bonding agent in the virgin elastomer and the composites improved the thermal stability. Results of kinetic studies showed that the degradation of NBR and the short nylon fiber reinforced composites followed first-order kinetics.
Resumo:
The rheological characteristics of short Nylon-6 fiber-reinforced Styrene Butadiene rubber (SBR) in the presence of epoxy resin-based bonding agent were studied with respect to the effect of shear rate, fiber concentration , and temperature on shear viscosity and die swell using a capillary rheonzeter. All the composites containing bonding agent showed a pseudoplastic nature, which decreased with increasing temperature. Shear viscosity was increased in the presence of fibers. The temperature sensitivity of the SBR matrices was reduced on introduction of fibers. The temperature sensitivity of the melts was found to be lower at higher shear rates. Die swell was reduced in the presence of fibers. Relative viscosity of the composites increased with shear rate. In the presence of epoxy resin bonding agent the temperature sensitivity of the mixes increased. Die swell was larger in the presence of bonding agent.
Resumo:
The rheological characteristics of short Nylon-6 fiber reinforced styrene butadiene rubber (SBR) were studied using a capillary rheometer. The study was done with respect to the effect of shear rate, fiber concentration, and temperature on shear viscosity and die swell. All the melts showed pseudoplastic nature, which decreased with increasing temperature. Shear viscosity increased in the presence of fibers. Introduction of fiber reduces the temperature sensitivity of the rubber matrix. A reduction in die swell was found in presence of fibers.
Resumo:
The thermal properties of short Nylon-6 fiber-reinforced Styrene butadiene rubber (SBR) composites were studied by Thermogravimetric Analysis (TGA). The effect of epoxy-based bonding agent on thermal degradation of the gum and the composites was also studied. The thermal stability of the SBR was enhanced in the presence of Nylon-6 fibers and the stability of the composites increased in the presence of bonding agent. The epoxy resin did not significantly change the thermal stability of SBR gum vulcanizate. Results of kinetic studies showed that the degradation of SBR and the short nylon fiber-reinforced composites with and without bonding agents followed first-order kinetics.
Resumo:
The effect of diphenylmethane diisocyanate (MDI) -polyethyleneglycol (PEG) resin on the cure characteristics and mechanical properties of nitrile rubber/whole tyre eclaim-short nylon fiber composite-was studied. At a constant loading of 5 phr, the resin composition was varied. The minimum torque .,id (maximum - minimum) torque increased with isocyanate concentration. Scorch time and cure time showed a reduction on introduction of bonding agent. Properties like tensile strength, tear strength, and abrasion resistance increased with increase in MDI/PEG ratio, and these properties are higher in the longitudinal direction of fiber orientation. Compression set increased with isocyanate concentration and the resilience remain unchanged.
Resumo:
Cure characteristics and mechanical properties of short nylon fiber reinforced acrylonitrile butadiene rubber-reclaimed rubber composites were studied. Minimum torque, (maximum-minimum) torque and cure rate increased with fiber concentration. Scorch time and cure time decreased by the addition of fibers. Properties like tensile strength, tear strength, elongation at break, abrasion loss and heat build up were studied in both orientations of fibers. Tensile and tear properties were enhanced by the addition of fibers and were higher in the longitudinal direction. Heat build up increased with fiber concentration and were higher in the longitudinal direction. Abrasion resistance was improved in presence of short fibers and was higher in the longitudinal direction. Resilience increased on the introduction of fibers. Compression set was higher for blends.
Resumo:
The cure characteristics and mechanical properties of short nylon fiber- styrene /whole tyre reclaim (SBR/WTR) composites with and without an interfacial bonding agent based on 4,4 diphenyl methane diisocyanate and polyethylene glycol (MDI/PEG) have been studied. An 80:40 blend of SBR/ WTR reinforced with 20 phr of short nylon fiber has been selected and the MDI/ PEG ratio has been changed from 0.67:1 to 2:1. The minimum and maximum torques increased with isocyanate concentration. The scorch time and cure time showed an initial reduction. The cure rate showed an initial improvement. Tensile strength, tear strength and abrasion resistance increased with MDI/PEG ratio, these values were higher in longitudinal direction. Resilience and compression set increased with isocyanate concentration.