40 resultados para Elastomers.
Resumo:
The primary aim of this work has been to prepare efficient and cost effective polymer bound antioxidants by direct’ attachment of conventional antioxidants to a modified polymer. Due to the importance and easy availability of natural rubber in Kerala, it is proposed to make use of low molecular weight natural rubber as the polymer substrate for binding the antioxidant in most cases. The molecular weight of such low molecular weight natural rubber can be easily manipulated by varying the time of mastication, UV—irradiation etc. Further, the bound antioxidant may also get vulcanized during the vulcanization of the elastomer to which it is added, making the antioxidant non—volatile and non extractable. Several methods are proposed to be investigated for attaching the antioxidant to the low molecular weight natural rubber such as modified Friedel-Craft's alkylation reaction, binding during UV—irradiation, binding during aggressive mastication etc. The efficiency of such rubber bound antioxidants is proposed to be compared with that of conventional antioxidants in terms of volatility, extractability in solvents, ageing resistance etc. Naturally occuring antioxidants such as cardanol, are also proposed to be modified by binding them to low molecular weight natural rubber. The study is undertaken with the intention of generating a class of bound antioxidants which can be used in elastomers for aggressive and long term application.
Resumo:
The distribution of curing agents and fillers in the constituents of an elastomer blend is an important factor which determines the curing behaviour and vulcanizate properties of the blend. The distribution of curatives and fillers largely depends on the nature of elastomers. The curatives tend to migrate preferentially to the rubber of higher unsaturation and/or higher polarity, and reinforcing fillers tend to get distributed in the low viscosity phase, resulting in inferior mechanical properties of the blends. The thesis suggests several methods for improving mechanical properties of blends like NBR/butyl, NR/butyl, NBR/EPDM and NR/.
Resumo:
The work presented in this thesis is regarding the development and evaluation of new bonding agents for short polyester fiber - polyurethane elastomer composites. The conventional bonding system based on hexamethylenetetramine, resorcinol and hydrated silica was not effective as a bonding agent for the composite, as the water eliminated during the formation of the RF resin hydrolysed the urethane linkages. Four bonding agents based on MDI/'I‘DI and polypropyleneglycol, propyleneglycol and glycerol were prepared and the composite recipe was optimised with respect to the cure characteristics and mechanical properties. The flow properties, stress relaxation pattern and the thermal degradation characteristics of the composites containing different bonding agents were then studied in detail to evaluate the new bonding systems. The optimum loading of resin was 5 phr and the ratio of the -01 to isocyanate was 1:1. The cure characteristics showed that the optimum combination of cure rate and processability was given by the composite with the resin based on polypropyleneglycol/ glycerol/ 4,4’diphenylmethanediisocynate (PPG/GL/MDI). From the rheological studies of the composites with and without bonding agents it was observed that all the composites showed pseudoplastic nature and the activation energy of flow of the composite was not altered by the presence of bonding agents. Mechanical properties such as tensile strength, modulus, tear resistance and abrasion resistance were improved in the presence of bonding agents and the effect was more pronounced in the case of abrasion resistance. The composites based on MDI/GL showed better initial properties while composites with resins based on MDI/PPG showed better aging resistance. Stress relaxation showed a multistage relaxation behaviour for the composite. Within the-strain levels studied, the initial rate of relaxation was higher and the cross over time was lesser for the composite containing bonding agents. The bonding agent based on MDI/PPG/GL was found to be a better choice for improving stress relaxation characteristics with better interfacial bonding. Thennogravimetirc analysis showed that the presence of fiber and bonding agents improved the thennal stability of the polyurethane elastomer marginally and it was maximum in the case of MDI / GL based bonding agents. The kinetics of degradation was not altered by the presence of bonding agents
Resumo:
Rubber ferrite composites have the unique advantage of mouldability, which is not easily obtainable using ceramic magnetic materials. The incorporation of mixed ferrites in appropriate weight ratios into the rubber matrix not only modi es the dielectric properties of the composite but also imparts magnetic properties to it. Mixed ferrites belonging to the series of Mn(1 – x )Znx Fe2O4 have been synthesised with diVerent values of x in steps of 0·2, using conventional ceramic processing techniques. Rubber ferrite composites were prepared by the incorporation of these pre-characterised polycrystallineMn(1 – x )Znx Fe2O4 ceramics into a natural rubber matrix at diVerent loadings according to a speci c recipe. The processability of these elastomers was determined by investigating their cure characteristics. The magnetic properties of the ceramic llers as well as of the rubber ferrite composites were evaluated and the results were correlated. Studies of the magnetic properties of these rubber ferrite composites indicate that the magnetisation increases with loading of the ller without changing the coercive eld. The hardness of these composites shows a steady increase with the loading of the magnetic llers. The evaluation of hardness andmagnetic characteristics indicates that composites with optimummagnetisation and almost minimum stiVness can be achieved with a maximum loading of 120 phr of the ller at x=0·4. From the data on the magnetisation of the composites, a simple relationship connecting the magnetisation of the rubber ferrite composite and the ller was formulated. This can be used to synthesise rubber ferrite composites with predetermined magnetic properties
Resumo:
Rubber ferrite composites (RFC) are magnetic polymer composites and have a variety of applications as flexible magnets, pressure=photo sensors, and microwave absorbers. The mouldability into complex shapes is one of the advantages of these magnetic elastomers. They have the potential of replacing the conventional ceramic materials, due to theire flexible nature. In the present study, the incorporation of pre-characterized hexagonal ferrites, namely barium ferrite (BaFe12O19), into natural rubber matrix is carried out according to a suitable recipe for various loadings of the filler. The processability of these compounds was determined by evaluating the cure characteristics: scorch time, cure time, and minimum and maximum torque. It has been found that the addition of magnetic fillers does not affect the processability of the composites, whereas the physical properties are modified. The magnetic properties of these composites containing various loadings of the magnetic filler were also investigated. The magnetic properties of RFC can be controlled by the addition of appropriate amount of the ferrite filler.
Resumo:
Nickel nanocomposites were prepared by incorporating nickel nanoparticles in a neoprene matrix according to a specific recipe for various loadings of nickel particles. The dielectric properties of these composites were evaluated for different frequencies ranging from 100 kHz to 8MHz at different temperatures from 30 ◦C to 120 ◦C. The dielectric permittivity increases with increase of nickel concentration. Increase in temperature enhances the permittivity initially, till 40 ◦C and thereafter the permittivity decreases. The dielectric loss exhibits relaxation peaks and the peaks shift to lower frequencies with increase in volume fraction of the nickel nanoparticles in the matrix. The evaluation of magnetic and dielectric properties of these composites suggests that the dielectric permittivity can be tailored by an appropriate loading of the filler using semi-empirical equations and the magnetic properties vary according to simple mixture equations
Resumo:
The Human race of our century is in gluttonous search for novel engineering products which led to a skyrocketed progress in research and fabrication of filled polymers. Recently, a big window has been opened up for speciality polymers especially elastomers with promising properties. Among the many reasons why rubbers are widely used in the process industries, three are considered as important. Firstly, rubbers operate in a variety of environments and possess usable ranges of deformity and durability and can be exploited through suitable and more or less conventional equipment design principles. Secondly, rubber is an eminently suitable construction material for protection against corrosion in the chemical plant and equipment against various corrosive chemicals as, acids and alkalies and if property tailored, can shield ionising radiations as X-rays and gamma rays in medical industry, with minimum maintenance lower down time, negligible corrosion and a preferred choice for aggressive corroding and ionising environment. Thirdly, rubber can readily and hastily, and at a relatively lower cost, be converted into serviceable products, having intricate shapes and dimensions. In a century’s gap, large employment of flexible polymer materials in the different segments of industry has stimulated the development of new materials with special properties, which paved its way to the synthesis of various nanoscale materials. At nano scale, one makes an entry into a world where multidisciplinary sciences meet and utilises the previously unapproached infinitesimal length scale, having dimension which measure upto one billionth of a meter, to create novel properties. The nano fillers augment the elastomers properties in an astonishing fashion due to their multifunctional nature and unprecedented properties have been exhibited by these polymer-nanocomposites just to beat the shortcomings of traditional micro composites. The current research aims to investigate the possibility of using synthesised nano barium sulphate for fabricating elastomer-based nanocomposites and thereby imparting several properties to the rubber. In this thesis, nano materials, their synthesis, structure, properties and applications are studied. The properties of barium sulphate like chemical resistance and radiopacity have been utilized in the present study and is imparted to the elastomers by preparing composites
Resumo:
Expanded polystyrene (EPS) constitutes a considerable part of thermoplastic waste in the environment in terms of volume. In this study, this waste material has been utilized for blending with silica-reinforced natural rubber (NR). The NR/EPS (35/5) blends were prepared by melt mixing in a Brabender Plasticorder. Since NR and EPS are incompatible and immiscible a method has been devised to improve compatibility. For this, EPS and NR were initially grafted with maleic anhydride (MA) using dicumyl peroxide (DCP) to give a graft copolymer. Grafting was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. This grafted blend was subsequently blended with more of NR during mill compounding. Morphological studies using Scanning Electron Microscopy (SEM) showed better dispersion of EPS in the compatibilized blend compared to the noncompatibilized blend. By this technique, the tensile strength, elongation at break, modulus, tear strength, compression set and hardness of the blend were found to be either at par with or better than that of virgin silica filled NR compound. It is also noted that the thermal properties of the blends are equivalent with that of virgin NR. The study establishes the potential of this method for utilising waste EPS
Resumo:
The current research investigates the possibility of using unmodified and modified nanokaolin, multiwalled carbon nanotube (MWCNT) and graphene as fillers to impart enhancement in mechanical, thermal, and electrical properties to the elastomers. Taking advantage of latex blending method, nanoclay, MWCNT and graphene dispersions, prepared by ultra sound sonication are dispersed in polymer latices. The improvement in material properties indicated better interaction between filler and the polymer.MWCNT and graphene imparted electrical conductivity with simultaneous improvement in mechanical properties. Layered silicates prepared by microwave method also significantly improve the mechanical properties of the nanocomposites. The thesis entitled ‘Studies on the use of Nanokaolin, MWCNT and Graphene in NBR and SBR’ consists of ten chapters. The first chapter is a concise introduction of nanocomposites, nanofillers, elastomeric matrices and applications of polymer nanocomposites. The state-of-art research in elastomer based nanocomposites is also presented. At the end of this chapter the main objectives of the work are mentioned. Chapter 2 outlines the specifications of various materials used, details of experimental techniques employed for preparing and characterizing nanocomposites. Chapter3 includes characterization of the nanofillers, optimsation of cure time of latex based composites and the methods used for the preparation of latex based and dry rubber based nanocomposites. Chapter4 presents the reinforcing effect of the nanofillers in XNBR latex and the characterization of the nanocomposites. Chapter5 comprises the effect of nanofillers on the properties of SBR latex and their characterization Chapter 6 deals with the study of cure characteristics, mechanical and thermal properties and the characterization of NBR based nanocomposites. Chapter7 is the microwave studies of MWCNT and graphene filled elastomeric nanocomposites. Chapter 8 gives details of the preparation of layered silicates, their characterization and use in different elastomeric matrices. Chapter 9 is the study of mechanical properties of nanoclay incorporated nitrile gloves .Chapter 10 presents the summary and conclusions of the investigation.
Resumo:
The Human race of our century is in gluttonous search for novel engineering products which led to a skyrocketed progress in research and fabrication of filled polymers. Recently, a big window has been opened up for speciality polymers especially elastomers with promising properties. Among the many reasons why rubbers are widely used in the process industries, three are considered as important. Firstly, rubbers operate in a variety of environments and possess usable ranges of deformity and durability and can be exploited through suitable and more or less conventional equipment design principles. Secondly, rubber is an eminently suitable construction material for protection against corrosion in the chemical plant and equipment against various corrosive chemicals as, acids and alkalies and if property tailored, can shield ionising radiations as X-rays and gamma rays in medical industry, with minimum maintenance lower down time, negligible corrosion and a preferred choice for aggressive corroding and ionising environment. Thirdly, rubber can readily and hastily, and at a relatively lower cost, be converted into serviceable products, having intricate shapes and dimensions. In a century’s gap, large employment of flexible polymer materials in the different segments of industry has stimulated the development of new materials with special properties, which paved its way to the synthesis of various nanoscale materials. At nano scale, one makes an entry into a world where multidisciplinary sciences meet and utilises the previously unapproached infinitesimal length scale, having dimension which measure upto one billionth of a meter, to create novel properties. The nano fillers augment the elastomers properties in an astonishing fashion due to their multifunctional nature and unprecedented properties have been exhibited by these polymer-nanocomposites just to beat the shortcomings of traditional micro composites. The current research aims to investigate the possibility of using synthesised nano barium sulphate for fabricating elastomer-based nanocomposites and thereby imparting several properties to the rubber. In this thesis, nano materials, their synthesis, structure, properties and applications are studied. The properties of barium sulphate like chemical resistance and radiopacity have been utilized in the present study and is imparted to the elastomers by preparing composites.