56 resultados para Distance-based techniques
Resumo:
Thiosemicarbazones have recently attracted considerable attention due to their ability to form tridentate chelates with transition metal ions through either two nitrogen and sulfur atoms, N–N–S or oxygen, nitrogen and sulfur atoms, O–N–S. Considerable interest in thiosemicarbazones and their transition metal complexes has also grown in the areas of biology and chemistry due to biological activities such as antitumoral, fungicidal, bactericidal, antiviral and nonlinear optical properties. They have been used for metal analyses, for device applications related to telecommunications, optical computing, storage and information processing.The versatile applications of metal complexes of thiosemicarbazones in various fields prompted us to synthesize the tridentate NNS-donor thiosemicarbazones and their metal complexes. As a part of our studies on transition metal complexes with these ligands, the researcher undertook the current work with the following objectives. 1. To synthesize and physico-chemically characterize the following thiosemicarbazone ligands: a. Di-2-pyridyl ketone-N(4)-methyl thiosemicarbazone (HDpyMeTsc) b. Di-2-pyridyl ketone-N(4)-ethyl thiosemicarbazone (HDpyETsc) 2. To synthesize oxovanadium(IV), manganese(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes using the synthesized thiosemicarbazones as principal ligands and some anionic coligands. 3. To study the coordination modes of the ligands in metal complexes by using different physicochemical methods like partial elemental analysis, thermogravimetry and by different spectroscopic techniques. 4. To establish the structure of compounds by single crystal XRD studies
Resumo:
Electroanalytical techniques represent a class of powerful and versatile analytical method which is based on the electrical properties of a solution of the analyte when it is made part of an electrochemical cell. They offer high sensitivity, accuracy, precision and a large linear dynamic range. The cost of instrumentation is relatively low compared to other instrumental methods of analysis. Many solid state electrochemical sensors have been commercialised nowadays. Potentiometry is a very simple electroanalytical technique with extraordinary analytical capabilities. Since valinomycin was introduced as an ionophore for K+, Ion Selective Electrodes have become one of the best studied and understood analytical devices. It can be used for the determination of substances ranging from simple inorganic ions to complex organic molecules. It is a very attractive option owing to the wide range of applications and ease of the use of the instruments employed. They also possess the advantages of short response time, high selectivity and very low detection limits. Moreover, analysis by these electrodes is non-destructive and adaptable to small sample volumes. It has become a standard technique for medical researchers, biologists, geologists and environmental specialists. This thesis presents the synthesis and characterisation of five ionophores. Based on these ionophores, nine potentiometric sensors are fabricated for the determination of ions such as Pb2+, Mn2+, Ni2+, Cu2+ and Sal- ion (Salicylate ion). The electrochemical characterisation and analytical application studies of the developed sensors are also described. The thesis is divided into eight chapters
Resumo:
The development of new materials has been the hall mark of human civilization. The quest for making new devices and new materials has prompted humanity to pursue new methods and techniques that eventually has given birth to modern science and technology. With the advent of nanoscience and nanotechnology, scientists are trying hard to tailor materials by varying their size and shape rather than playing with the composition of the material. This, along with the discovery of new and sophisticated imaging tools, has led to the discovery of several new classes of materials like (3D) Graphite, (2D) graphene, (1D) carbon nanotubes, (0D) fullerenes etc. Magnetic materials are in the forefront of applications and have beencontributing their share to remove obsolescence and bring in new devices based on magnetism and magnetic materials. They find applications in various devices such as electromagnets, read heads, sensors, antennas, lubricants etc. Ferromagnetic as well as ferrimagnetic materials have been in use in the form of various devices. Among the ferromagnetic materials iron, cobalt and nickel occupy an important position while various ferrites finds applications in devices ranging from magnetic cores to sensors.
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
This is a Named Entity Based Question Answering System for Malayalam Language. Although a vast amount of information is available today in digital form, no effective information access mechanism exists to provide humans with convenient information access. Information Retrieval and Question Answering systems are the two mechanisms available now for information access. Information systems typically return a long list of documents in response to a user’s query which are to be skimmed by the user to determine whether they contain an answer. But a Question Answering System allows the user to state his/her information need as a natural language question and receives most appropriate answer in a word or a sentence or a paragraph. This system is based on Named Entity Tagging and Question Classification. Document tagging extracts useful information from the documents which will be used in finding the answer to the question. Question Classification extracts useful information from the question to determine the type of the question and the way in which the question is to be answered. Various Machine Learning methods are used to tag the documents. Rule-Based Approach is used for Question Classification. Malayalam belongs to the Dravidian family of languages and is one of the four major languages of this family. It is one of the 22 Scheduled Languages of India with official language status in the state of Kerala. It is spoken by 40 million people. Malayalam is a morphologically rich agglutinative language and relatively of free word order. Also Malayalam has a productive morphology that allows the creation of complex words which are often highly ambiguous. Document tagging tools such as Parts-of-Speech Tagger, Phrase Chunker, Named Entity Tagger, and Compound Word Splitter are developed as a part of this research work. No such tools were available for Malayalam language. Finite State Transducer, High Order Conditional Random Field, Artificial Immunity System Principles, and Support Vector Machines are the techniques used for the design of these document preprocessing tools. This research work describes how the Named Entity is used to represent the documents. Single sentence questions are used to test the system. Overall Precision and Recall obtained are 88.5% and 85.9% respectively. This work can be extended in several directions. The coverage of non-factoid questions can be increased and also it can be extended to include open domain applications. Reference Resolution and Word Sense Disambiguation techniques are suggested as the future enhancements
Resumo:
This paper proposes a region based image retrieval system using the local colour and texture features of image sub regions. The regions of interest (ROI) are roughly identified by segmenting the image into fixed partitions, finding the edge map and applying morphological dilation. The colour and texture features of the ROIs are computed from the histograms of the quantized HSV colour space and Gray Level co- occurrence matrix (GLCM) respectively. Each ROI of the query image is compared with same number of ROIs of the target image that are arranged in the descending order of white pixel density in the regions, using Euclidean distance measure for similarity computation. Preliminary experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods.
Resumo:
This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding, morphological dilation. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. A combined colour and texture feature vector is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). A modified Integrated Region Matching (IRM) algorithm is used for finding the minimum distance between the sub-blocks of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.
Resumo:
Speech processing and consequent recognition are important areas of Digital Signal Processing since speech allows people to communicate more natu-rally and efficiently. In this work, a speech recognition system is developed for re-cognizing digits in Malayalam. For recognizing speech, features are to be ex-tracted from speech and hence feature extraction method plays an important role in speech recognition. Here, front end processing for extracting the features is per-formed using two wavelet based methods namely Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Naive Bayes classifier is used for classification purpose. After classification using Naive Bayes classifier, DWT produced a recognition accuracy of 83.5% and WPD produced an accuracy of 80.7%. This paper is intended to devise a new feature extraction method which produces improvements in the recognition accuracy. So, a new method called Dis-crete Wavelet Packet Decomposition (DWPD) is introduced which utilizes the hy-brid features of both DWT and WPD. The performance of this new approach is evaluated and it produced an improved recognition accuracy of 86.2% along with Naive Bayes classifier.
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
In this thesis, different techniques for image analysis of high density microarrays have been investigated. Most of the existing image analysis techniques require prior knowledge of image specific parameters and direct user intervention for microarray image quantification. The objective of this research work was to develop of a fully automated image analysis method capable of accurately quantifying the intensity information from high density microarrays images. The method should be robust against noise and contaminations that commonly occur in different stages of microarray development.
Resumo:
The toluene diisocyanate based optically active chiral polyurethanes were synthesized according to the symmetry conditions. The noncentrosymmetric (both charge asymmetry and spatial asymmetry) environment were attained by the incorporation of the chiral units (diethyl-(2R,3R)(þ)-tartrate) and donor-acceptor building blocks in the main chain which induce a helical conformation in the macromolecular chain. A series of optically active polyurethanes containing chiral linkages in the polymer back bone have been synthesized by using DBTDL catalyst by incorporating the amido diols which were obtained by the aminolysis of e-caprolactone by using the diamines, diaminoethane, diaminobutane, and diaminohexane respectively. The effect of incorporation of the chiral molecule diethyl-(2R,3R)(þ)-tartrate on the properties of polyurethanes was studied by changing the chromophores and also by varying the chiral-chromophore composition. Various properties of polyurethanes were investigated by UV, Fluorescence, TG/DTA, XRD, polarimetric techniques, Kurtz-Perry powder techniques, etc.
Resumo:
For years, choosing the right career by monitoring the trends and scope for different career paths have been a requirement for all youngsters all over the world. In this paper we provide a scientific, data mining based method for job absorption rate prediction and predicting the waiting time needed for 100% placement, for different engineering courses in India. This will help the students in India in a great deal in deciding the right discipline for them for a bright future. Information about passed out students are obtained from the NTMIS ( National technical manpower information system ) NODAL center in Kochi, India residing in Cochin University of science and technology
Resumo:
The goal of this work is to develop an Open Agent Architecture for Multilingual information retrieval from Relational Database. The query for information retrieval can be given in plain Hindi or Malayalam; two prominent regional languages of India. The system supports distributed processing of user requests through collaborating agents. Natural language processing techniques are used for meaning extraction from the plain query and information is given back to the user in his/ her native language. The system architecture is designed in a structured way so that it can be adapted to other regional languages of India