44 resultados para Cosmetic dye
Resumo:
Pulsed photoacoustic technique which is found to be a very convenient and accurate method, is used for the determination of absolute fluorescence quantum yield of laser dye rhodamine B. Concentration and power dependence of quantum yield of rhodamine B in methanol for excitation at 532 nm is reported here. Results show that a rapid decrease in quantum yield as the concentration is increased and finally it reaches the limit corresponding to fluorescence quenching.
Resumo:
The results of a brief investigation of the amplified spontaneous emission and lasing characteristics of Coumarin 540 dye in as many as ten different solvents are reported. It has been found that C 540 dye solutions contained within a rectangular quartz cuvette give laser emission with well resolved equally spaced modes when pumped with a 476 nm beam. The modes were found to originate from the subcavities formed by the plane-parallel walls of the cuvette containing the high-gain medium. While the quantum yield remains a decisive factor, a clear correlation between the total width of the emission spectra and the refractive indices of the solvents of the respective samples has been demonstrated. The well-resolved mode structure exhibited by the emission spectra gives clear evidence of the lasing action taking place in the gain medium, and the number of modes enables us to compare the gain of the media in different samples. A detailed discussion of the solvent effect in the lasing characteristics of C540 in different solutions is given.
Resumo:
Thermal diffusivity (TD) measurements were performed on some industrially important dyes – auramine O (AO), malachite green and methylene blue (MB) – adsorbed K-10 montmorillonites using photoacoustic method. The TD value for the dye-adsorbed clay mineral was observed to change with a variation in dye concentration. The contribution of the dye towards TD was also determined. The repeatedly adsorbed samples with MB and AO exhibited a lower TD than the single-adsorbed samples. TD values of sintered MB samples were also obtained experimentally. These sintered samples exhibit a higher TD, although they show a trend similar to that of non-sintered pellets. A variation in dye concentration and sintering temperature can be used for tuning the TD value of the clay mineral to the desired level.
Resumo:
International School of Photonics, Cohin University of Science and Technology
Resumo:
This thesis Entitled Colour removal from dye house effluents using zero valent iron and fenton oxidation.Findings reported on kinetic profile during oxidation of dyes with Fenton’s reagent are in good agreement with observations of earlier workers on other organic substrates. This work goes a step further. Critical concentration of the dye at which the reaction mechanism undergoes transition has been identified.The oxidation of Reactive Yellow showed that the initial rates for decolorization increased linearly with an increase in hydrogen peroxide concentration over the range studied. Fenton oxidation of all dyes except Methylene Blue showed that the initial rates increased linearly with an in the ferrous sulphate concentration. This increase was observed only up to an optimum concentration beyond which further increase resulted in a decrease in the initial rates. Variation of initial rates with Ferrous sulphate concentration resulted in a linear plot passing through the origin indicating that the reaction is first order with respect to ferrous sulphate.
Resumo:
The central theme of the work presented in this thesis is a careful investigation of the factors influencing the attenuation of laser beam through sea water. The thesis presents a detailed report of the work done by the author on the attenuation studies in sea water and on laser propagation through a turbulent medium. The thesis contains six chapters which are more or less self-contained with separate abstracts and references. The first chapter is divided into two parts. The first part introduces the subject of laser propagation through sea water. It includes a brief description of optical properties of sea water followed by a review of the earlier works on attenuation studies in water. The second part gives the theoretical background of the problem of laser propagation through a turbulent medium.
Resumo:
The advent of high optical quality transparent nano—structured glasses, the so-called transparent glass ceramics or vitroceramics disclosed the possibility of producing nano-sized photonic devices based on rare-earth doped up—converters. Transparent glass ceramics have been investigated as hosts for lanthanide ions envisioning the production of materials that are easy to shape and with high performance for photonic applications. Rare earth doped glasses have been extensively studied due to their potential applications in optical devices such as solid state lasers and optical fibers. Various photothermal and optical techniques have been successfully applied for the thermal and optical characterization of these rare earth doped materials. In the present thesis, the effective thermal parameters like thermal diffusivity and thermal effusivity of complex materials for various applications have been investigated using photothermal methods along with their optical characterization utilising the common optical absorption as well as fluorescence spectroscopic techniques. These sensitive optical procedures are also essential for exploiting these materials for further photonic applications.
Resumo:
Eventhough a large number of schemes have been proposed and develoned for N9 laser ouined dye lasers the relatively low efficiency compelled the scientists to device new methods to improve the system efficiencs. Energy transfer mechanism has been shown to he a convenien tool for the enhancement of efficiency of dye lasers. Th p resent work covers a detailed study of the performance characteristics of a N2 laser pumped dye laser in the con— ventional mode and also, when pumped by the energy transfer mechanism. For .th.e present investigations a dye laser pumped by a'N2 laser (A4200 kw peak power) was fabricated. The grating at grazing incidence was used as the beam expanding device; A t its best performance the system was giving an output peak power of l5 kW for a 5 X lC"3H/l Rh—€ solution in methanol. T he conversion efficiency was 7.5; The output beam was having 3 divergence of 2 mrad and bandwidth o.9 A. Suitable modifications were suggested for obtaining better conversion efficiency and bandwidth.
Resumo:
Thermal diffusivity (TD) measurements were performed on some industrially important dyes – auramine O (AO), malachite green and methylene blue (MB) – adsorbed K-10 montmorillonites using photoacoustic method. The TD value for the dye-adsorbed clay mineral was observed to change with a variation in dye concentration. The contribution of the dye towards TD was also determined. The repeatedly adsorbed samples with MB and AO exhibited a lower TD than the single-adsorbed samples. TD values of sintered MB samples were also obtained experimentally. These sintered samples exhibit a higher TD, although they show a trend similar to that of non-sintered pellets. A variation in dye concentration and sintering temperature can be used for tuning the TD value of the clay mineral to the desired level
Resumo:
Prodigiosin is known for its immunomodulatory, antibacterial, antimycotic, antimalarial, algicidal and anticancer activities. Here, we reported the evaluation of prodigiosin pigment as a dyeing agent in rubber latex, paper and polymethyl methacrylate (PMMA) so that it can be considered as an alternative to synthetic pigments. Maximum color shade was obtained in rubber sheet prepared with 0.5 parts per hundred gram of rubber (phr) pigment and PMMA sheet incorporated with 0.08 μg pigment. Results indicate scope for utilization of prodigiosin as dye for PMMA and rubber and also prodigiosin dyed paper as a pH indicator. Further, being a natural and water insoluble pigment, it is ecofriendly
Resumo:
The textile industry is one amongst the rapidly growing industries world wide, which utilizes enormous amounts of synthetic dyes. Consequently, the effluent from these textile industries poses serious threat to the environment which is often very difficult to treat and dispose. This has become a very grave problem in environment conservation and hence natural pigments have drawn the attention of industry as safe alternative. In this context, in the present study an attempt was made to bioprospect marine bacteria towards isolation of a suitable and ideal pigment that could be used as a natural dye. A marine Serratia sp. BTWJ8 was recognized to synthesize enormous amounts of a prodigiosin-like pigment. The pigment was isolated and characterized for various properties. The pigment was evaluated for application as a dye in the textile industry. Results of the studies indicated that this pigment could be used as a natural dye for imparting red-yellow colour to various grades of textile materials. The colour was observed to be stable after wash performance studies
Resumo:
Holographic grating with good storage life in poly(vinyl alcohol) based photopolymer film, prepared by gravity settling method, with reduced concentration of the dye was found to give good diffraction efficiency without crosslinking. The material was found to show good diffraction efficiency and sensitivity (75% diffraction efficiency at exposure energy of 80 mJ/cm2). The shelf life of the photopolymer solution could be improved by storage at a temperature 4 C in refrigerator
Resumo:
Green energy and Green technology are the most of the quoted terms in the context of modern science and technology. Technology which is close to nature is the necessity of the modern world which is haunted by global warming and climatic alterations. Proper utilization of solar energy is one of the goals of Green Energy Movement. The present thesis deals with the work carried out in the eld of nanotechnology and its possible use in various applications (employing natural dyes) like solar cells. Unlike arti cial dyes, the natural dyes are available, easy to prepare, low in cost, non-toxic, environmentally friendly and fully biodegradable. Looking to the 21st century, the nano/micro sciences will be a chief contributor to scienti c and technological developments. As nanotechnology progresses and complex nanosystems are fabricated, a growing impetus is being given to the development of multi-functional and size-dependent materials. The control of the morphology, from the nano to the micrometer scales, associated with the incorporation of several functionalities can yield entirely new smart hybrid materials. They are special class of materials which provide a new method for the improvement of the environmental stability of the material with interesting optical properties and opening a land of opportunities for applications in the eld of photonics. Zinc oxide (ZnO) is one such multipurpose material that has been explored for applications in sensing, environmental monitoring, and bio-medical systems and communications technology. Understanding the growth mechanism and tailoring their morphology is essential for the use of ZnO crystals as nano/micro electromechanical systems and also as building blocks of other nanosystems.
Resumo:
Polymer Optical Fibers have occupied historically a place for large core flexible fibers operating in short distances. In addition to their practical passive application in short-haul communication they constitute a potential research field as active devices with organic dopants. Organic dyes are preferred as dopants over organic semiconductors due to their higher optical cross section. Thus organic dyes as gain media in a polymer fiber is used to develop efficient and narrow laser sources with a tunability throughout the visible region or optical amplifier with high gain. Dyes incorporated in fiber form has added advantage over other solid state forms such as films since the pump power required to excite the molecules in the core of the fiber is less thereby utilising the pump power effectively. In 1987, Muto et.al investigated a dye doped step index polymer fiber laser. Afterwards, numerous researches have been carried out in this area demonstrating laser emission from step index, graded index and hollow optical fibers incorporating various dyes. Among various dyes, Rhodamine6G is the most widely and commonly used laser dye for the last four decades. Rhodamine6G has many desirable optical properties which make it preferable over other organic dyes such as Coumarin, Nile Blue, Curcumin etc. The research focus on the implementation of efficient fiber lasers and amplifiers for short fiber distances. Developing efficient plastic lasers with electrical pumping can be a new proposal in this field which demands lowest possible threshold pump energy of the gain medium in the cavity as an important parameter. One way of improving the efficiency of the lasers, through low threshold pump energy, is by modifying the gain of the amplifiers in the resonator/cavity. Success in the field of Radiative Decay Engineering can pave way to this problem. Laser gain media consisting of dye-nanoparticle composites can improve the efficiency by lowering the lasing threshold and enhancing the photostability. The electric field confined near the surface of metal nanoparticles due to Localized Surface Plasmon Resonance can be very effective for the excitation of active centers to impart high optical gain for lasing. Since the Surface Plasmon Resonance of nanoparticles of gold and silver lies in the visible range, it can affect the spectral emission characteristics of organic dyes such as Rhodamine6G through plasmon field generated by the particles. The change in emission of the dye placed near metal nanoparticles depend on plasmon field strength which in turn depends on the type of metal, size of nanoparticle, surface modification of the particle and the wavelength of incident light. Progress in fabrication of different types of nanostructures lead to the advent of nanospheres, nanoalloys, core-shell and nanowires to name a few. The thesis deals with the fabrication and characterisation of polymer optical fibers with various metallic and bimetallic nanostructures incorporated in the gain media for efficient fiber lasers with low threshold and improved photostability.