44 resultados para Coastal lagoons
Resumo:
The present study deals with the different hydrogeological characteristics of the coastal region of central Kerala and a comparative analysis with corresponding hard rock terrain. The coastal regions lie in areas where the aquifer systems discharge groundwater ultimately into the sea. Groundwater development in such regions will require a precise understanding of the complex mechanism of the saline and fresh water relationship, so that the withdrawals are so regulated as to avoid situations leading to upcoming of the saline groundwater bodies as also to prevent migration of sea water ingress further inland. Coastal tracts of Kerala are formed by several drainage systems. Thick pile of semi-consolidated and consolidated sediments from Tertiary to Recent age underlies it. These sediments comprise phreatic and confined aquifer systems. The corresponding hard rock terrain is encountered with laterites and underlined by the Precambrian metamorphic rocks. Supply of water from hard rock terrain is rather limited. This may be due to the small pore size, low degree of interconnectivity and low extent of weathering of the country rocks. The groundwater storage is mostly controlled by the thickness and hydrological properties of the weathered zone and the aquifer geometry. The over exploitation of groundwater, beyond the ‘safe yield’ limit, cause undesirable effects like continuous reduction in groundwater levels, reduction in river flows, reduction in wetland surface, degradation of groundwater quality and many other environmental problems like drought, famine etc.
Resumo:
Assessment water’ quality nowa-days in global scenario implies the need for a reference point against which monitoring can be measured and weighed. Aquatic ecosystenis as part of the natural environment are balanced both witliin tlicinselves and with other environmental compartments and this equilibrium is subject to natural variations and evolutions as well as variations caused by human intervention. The present assessnient is to identify. and possibly quantify, anthropogenic influences over time against a “natural baseline situation. Water pollution problems have only recently been taken seriously in retrospect. Once damage occurred, it becomes immeasurable, and control action cannot be initiated
Resumo:
Everywhere, on the coastal belt it is proved without doubt that the pristine ground water quality was severely deteriorated after the 26 December 2004 Indian Ocean Tsunami. But how far is more relevant, as it is decided by the so-called pre-tsunamic situation of the region. In water quality studies it is this reference finger print which earmarks regional ground water chemistry based on which the monthly variability could rationally be interpreted. This Ph D thesis comprises the testing and evaluation of the facts: whether there is any significant difference in the water quality parameters under study between stations and between months in Tsunami Affected Dug Wells (TADW). Whether the selected water quality parameters vary significantly from BIS and WHO standards. Whether the water quality index (WQI) differ significantly between Tsunami Affected Dug Wells (TADW) and Bore Wells (BW). Whether there is any significant difference in the water quality parameters during December 2005 and December 2008. Is there any significant change in the Water Quality Parameters before 2001 and after tsunami (2005) in TADW.
Resumo:
All over the world, several Quaternary proxy data have been used to reconstruct past sea levels, mainly radiocarbon or OSL dating of exposures of marine facies or shore line indicators (e.g. Carr et al., 2010) as well as paleoenvironmental indicators in lagoon or estuary sediments (e.g. Baxter and Meadows, 1999). Estuaries and deltas develop at river mouths during transgressive and regressive phases, respectively (Boyd et al., 1992). In particular, the postglacial Holocene sea-level rise has contributed importantly to the estuary-to-delta transition (Hori et al. 2004). By analyzing radiocarbon ages of the basal or near-basal sediments of the world’s deltas, Stanley and Warne (1994) showed that delta initiation occurred on a worldwide scale after about 8500–6500 years BP and concluded that the initiation was controlled principally by the declining rate of the Holocene sea-level rise. Worldwide there were different regional sea-level changes since the last glacial maximum (LGM) (Irion et al., 2012). Along the northern Canadian coast, for example, sea level has been falling throughout the Holocene due to the glacial rebound of the crust after the last glaciation (Peltier, 1988). This is comparable to the development in Scandinavia (Steffen and Kaufmann, 2005) where sea level drops today. From about Virginia/USA to Mexico there is a constant sea-level rise similar to the Holocene sea-level development of the southern North Sea (e.g. Vink et al., 2007). From the border of Ceará/Rio Grande do Norte down to Patagonia, indicators of Holocene sea level point to a level that was up to 5 m higher than today's mean sea level (Angulo et al., 1999; Martin et al., 2003; Caldas et al., 2006a, b)
Resumo:
Coastal Regulation Zone (CRZ) notification was issued by the Ministry of Environment and Forest of Government of India in February 1991 as a part of the Environmental Protection Act of 1986 to protect the coast from eroding and to preserve its natural resources. The initial notification did not distinguish the variability and diversity of various coastal states before enforcing it on the various states and Union Territories. Impact assessments were not carried out to assess its impact on socio-economic life of the coastal population. For the very same reason, it was unnoticed or rather ignored till 1994 when the Supreme Court of India made a land mark judgment on the fate of the coastal aquaculture which by then had established as an economically successful industry in many South Indian States. Coastal aquaculture in its modern form was a prohibited activity within CRZ. Lately, only various stakeholders of the coast realized the real impact of the CRZ rules on their property rights andbusiness. To overcome the initial drawbacks several amendments were made in the regulation to suit regional needs. In 1995, another great transformation took place in the State of Kerala as a part of the reorganization of the local self government institutions into a decentralized three tier system called ‘‘Panchayathi Raj System’’. In 1997, the state government also decided to transfer the power with the required budget outlay to the grass root level panchayats (villages) and municipalities to plan and implement the various projects in their localities with the full participation of the local people by constituting Grama Sabhas (Peoples’ Forum). It is called the ‘‘Peoples’ Planning Campaign’’(Peoples’ Participatory Programme—PPP for Local Level Self-Governance). The management of all the resources including the local natural resources was largely decentralized to the level of local communities and villages. Integrated, sustainable coastal zone management has become the concern of the local population. The paper assesses the socio-economic impact of the centrally enforced CRZ and the state sponsored PPP on the coastal community in Kerala and suggests measures to improve the system and living standards of the coastal people within the framework of CRZ.
Resumo:
Low-lying coastal areas are more vulnerable to the impacts of climate change as they are highly prone for inundation to SLR (Sea-Level Rise). This study presents an appraisal of the impacts of SLR on the coastal natural resources and its dependent social communities in the low-lying area of VellareColeroon estuarine region of the Tamil Nadu coast, India. Digital Elevation Model (DEM) derived from SRTM 90M (Shuttle Radar Topographic Mission) data, along with GIS (Geographic Information System) techniques are used to identify an area of inundation in the study site. The vulnerability of coastal areas in Vellar-Coleroon estuarine region of Tamil Nadu coast to inundation was calculated based on the projected SLR scenarios of 0.5 m and 1 m. The results demonstrated that about 1570 ha of the LULC (Land use and Land cover) of the study area would be permanently inundated to 0.5 m and 2407 ha for 1 m SLR and has also resulted in the loss of three major coastal natural resources like coastal agriculture, mangroves and aquaculture. It has been identified that six hamlets of the social communities who depend on these resources are at high-risk and vulnerable to 0.5 m SLR and 12 hamlets for 1 m SLR. From the study, it has been emphasized that mainstreaming adaptation options to SLR should be embedded within a coastal zone management and planning effort, which includes all coastal natural resources (ecosystem-based adaptation), and its dependent social communities (community-based adaptation) involved through capacity building
Resumo:
An experiment was designed to assess the occurrence of multiple antibiotic resistances in Vibrio sp from different (brackish and marine) environments. Water samples from nine marine landing sites and two coastal inland aquaculture farms were screened for the Vibrio spp and assessed their resistance to twenty-two different antibiotics, which are commonly encountered in the aquatic ecosystem. Tissue samples (shrimp, mussel and sepia) were tested from the sampling site with highest antibiotic resistance. Of the total 119 Vibrio isolates, 16. 8% were susceptible to all antibiotics. Of the resistant (83.19%) Vibrio strains, 30.3% were resistant against three antibiotics, 55.5% were resistant against 4-10 antibiotics, 14.14% were resistant against more than 10 antibiotics and 54% have shown multiple antibiotics resistance (MAR). Antibiotic resistance index was higher in Coastal 3, 6, Aqua farm 2 in isolates from water samples and all the tissues tested. Interestingly, incidence of antibiotic resistance in isolates from water samples was comparatively lower in aquaculture farms than that observed in coastal areas. Highest incidence of antibiotic resistance was evident against Amoxycillin, Ampicillin, Carbencillin and Cefuroxime followed by Rifampicin and Streptomycin and lowest against Chloramphenicol, Tetracycline, Chlortetracycline, Furazolidone, Nalidixic acid, Gentamycin Sulphafurazole, Trimethoprirn, Neomycin and Amikacin irrespective of the sampling sites. Results from various tissue samples collected from the sites of highest antibiotic resistance indicated that antibiotic resistance Vibrio spp collected from fish and tissue samples were higher than that of water samples. Overall results indicated that persistent use of antibiotics against diseases in human beings and other life forms may pollute the aquatic system and their impact on developing antibiotic resistant Vibrio sp may be a serious threat in addition to the use of antibiotics in aquaculture farms.
Resumo:
The extensive backwaters of Kerala are the sites for a flourishing cottage industry - the coir industry. This enterprise almost exclusively located along the 590 km coastal belt of Kerala, provides direct employment to over half a million people in the state and produces nearly 90% of the total coir goods in the world. The shallow bays and lagoons of the 30 backwater systems of the state are traditional areas for the retting of coconut husk for the production of the coir fibre. The paper examines the environmental status of the retting grounds in Kerala, in relation to the biotic communities. The study revealed that retting activity has caused large scale organic pollution along with the mass destruction of the flora and fauna, converting sizeable sections of the backwaters into virtual cesspools of foul smelling stagnant waters. High values of hydrogen sulphide, ammonia, BOD5 associated with anoxic conditions and low community diversity of plankton, benthic fauna, fish, shell fish, wood boring and fouling organisms were the outstanding feature of the retting zones.
Resumo:
The length – weight relationship and relative condition factor of the shovel nose catfish, Arius subrostratus (Valenciennes, 1840) from Champakkara backwater were studied by examination of 392 specimens collected during June to September 2008. These fishes ranged from 6 to 29 cm in total length and 5.6 to 218 g in weight. The relation between the total length and weight of Arius subrostratus is described as Log W = -1.530+2.6224 log L for males, Log W = - 2.131 + 3.0914 log L for females and Log W = - 1.742 + 2.8067 log L for sexes combined. The mean relative condition factor (Kn) values ranged from 0.75 to 1.07 for males, 0.944 to 1.407 for females and 0.96 to 1.196 for combined sexes. The length-weight relationship and relative condition factor showed that the well-being of A. subrostratus is good. The morphometric measurements of various body parts and meristic counts were recorded. The morphometric measurements were found to be non-linear and there is no significant difference observed between the two sexes. From the present investigation, the fin formula can be written as D: I, 7; P: I, 12; A: 17 – 20; C: 26 – 32. There is no change in meristic counts with the increase in body length.
Resumo:
The South West (S.W.) coast of India is blessed with a series of wetland systems popularly referred to as backwaters covering a total area of 46128.94 ha. These backwaters are internationally renowned for their aesthetic and scientific values including being a repository for several species fish and shell fishes. This is more significant in that three wetlands (Vembanad, Sasthamcotta and Ashtamudi) have recently been designated as Ramsar sites of international importance. Thirty major backwaters forming the crux of the coastal wetlands form an abode for over 200 resident or migratory fish and shellfish species. The fishing activities in these water bodies provide the livelihood to about 200,000 fishers and also provide full-time employment to over 50,000 fishermen. This paper describes the changes on the environmental and biodiversity status of selected wetlands, during 1994-2005 period. The pH was generally near neutral to alkaline in range. The salinity values indicated mixohaline condition ranging from 5.20-32.38 ppt. in the 12 wetlands. The productivity values were generally low in most of the wetlands during the study, where the gross production varied from 0.22 gC/m3/day in Kadinamkulam to 1.10 gC/m3/day in the Kayamkulam. The diversity of plankton and benthos was more during the pre-monsoon compared to the monsoon and post-monsoon periods in most of the wetlands. The diversity of plankton and benthos was more during the pre-monsoon compared to the monsoon and post-monsoon periods in most of the wetlands. The average fish yield per ha. varied from 246 kg. in Valapattanam to 2747.3 kg. in Azhikode wetland. Retting of coconut husk in most of the wetlands led to acidic pH conditions with anoxia resulting in the production of high amounts of sulphide, coupled with high carbon dioxide values leading to drastic reduction in the incidence and abundance of plankton, benthic fauna and the fishery resources. The major fish species recorded from the investigation were Etroplus suratensis, E. maculatus, Channa marulius, Labeo dussumieri, Puntius sp. Lutianus argentimaculatus, Mystus sp., Tachysurus sp. and Hemiramphus sp. The majority of these backwaters are highly stressed, especially during the pre monsoon period when the retting activity is at its peak. The study has clearly reflected that a more restrained and cautious approach is needed to manage and preserve the unique backwater ecosystems of South-west India
Resumo:
The fertility of the coastal and estuarine waters is of great concern because of its influence on the productivity of these waters. Seasonal variations in the distribution of organic carbon, total nitrogen and total phosphorus in the sediments of Kuttanad Waters, a part of the tropical Cochin Estuary on the south west coast of India, are examined to identify the contribution of sediments to the fertility of the aquatic systems. The adjoining region has considerable agricultural activity. The fresh water zones had higher quantities of silt and clay whereas the estuarine zone was more sandy. Organic carbon, total phosphorus and total nitrogen were higher in the fresh water zones and lower in the estuarine zones. Total phosphorus and organic carbon showed the lowest values during monsoon periods. No significant trends were observed in the seasonal distributions of total nitrogen. Ratios of C/N, C/P and N/P, and the phosphorus and nitrogen content indicate significant modification in the character of the organic matter. Substantial amounts of the organic matter can contribute to reducing conditions and modify diagenetic processes
Resumo:
Concentration levels of Cr, Ni, Zn, Pb and Cu in relation to those of the nutrients - total phosphates, exchangeable nitrates, total organic carbon, etc. have been investigated in the sediments of Nagapattinam beach after the 2004 tsunami. The maximum values in the study area were 3204, 75, 71, 57 and 18.5 ug g-l for Cr, Ni, Zn, Pb and Cu respectively; Cd was below detectable level. All the trace elements were relatively high in the near-shore sediments and the distribution pattern of the metals in the study area was in the order: Cr > Ni > Zn > Pb > Cu. The present study shows that the tsunami has brought the clayey sediments from the sea-bottom that were settled for years together in inland areas as well as from the offshore sediments. The event has changed the chemical composition of the beach sediments and is threatening fishing grounds even in trace concentrations
Resumo:
The distribution of three important dissolved forms of nitrogen, viz. nitrate, nitrite and urea in the surface and bottom water samples collected from 27 selected hydrographic profiles, in the Arabian Sea, along the west coast of India is described. Of the three forms, nitrate concentrations were the highest and comparatively higher concentrations were observed in the bottom water. Decomposition of organic matter resulting in the release of the thermodynamically stable nitrogen species, i.e. nitrate, may be the major factor resulting in higher nitrate concentrations at these depths, where the water is also characterized by low values of dissolved oxygen and temperature. The significant positive correlation between A.O.U. and nitrate of the bottom water samples emphasizes the role of oxidative decomposition of organic matter which plays an active role in reducing the oxygen concentrations below the theoretical values since at this depth ( 200 m) the net production is taken to be zero. This is also evidenced by the negative correlation of nitrate with dissolved oxygen and temperature, for the bottom samples
Resumo:
This thesis entitled “Studies on Nitrifying Microorganisms in Cochin Estuary and Adjacent Coastal Waters” reports for the first time the spatial andtemporal variations in the abundance and activity of nitrifiers (Ammonia oxidizingbacteria-AOB; Nitrite oxidizing bacteria- NOB and Ammonia oxidizing archaea-AOA) from the Cochin Estuary (CE), a monsoon driven, nutrient rich tropicalestuary along the southwest coast of India. To fulfil the above objectives, field observations were carried out for aperiod of one year (2011) in the CE. Surface (1 m below surface) and near-bottomwater samples were collected from four locations (stations 1 to 3 in estuary and 4 in coastal region), covering pre-monsoon, monsoon and post-monsoon seasons. Station 1 is a low saline station (salinity range 0-10) with high freshwater influx While stations 2 and 3 are intermediately saline stations (salinity ranges 10-25). Station 4 is located ~20 km away from station 3 with least influence of fresh water and is considered as high saline (salinity range 25- 35) station. Ambient physicochemical parameters like temperature, pH, salinity, dissolved oxygen (DO), Ammonium, nitrite, nitrate, phosphate and silicate of surface and bottom waters were measured using standard techniques. Abundance of Eubacteria, total Archaea and ammonia and nitrite oxidizing bacteria (AOB and NOB) were quantified using Fluorescent in situ Hybridization (FISH) with oligonucleotide probes labeled withCy3. Community structure of AOB and AOA was studied using PCR Denaturing Gradient Gel Electrophoresis (DGGE) technique. PCR products were cloned and sequenced to determine approximate phylogenetic affiliations. Nitrification rate in the water samples were analyzed using chemical NaClO3 (inhibitor of nitrite oxidation), and ATU (inhibitor of ammonium oxidation). Contribution of AOA and AOB in ammonia oxidation process was measured based on the recovered ammonia oxidation rate. The contribution of AOB and AOA were analyzed after inhibiting the activities of AOB and AOA separately using specific protein inhibitors. To understand the factors influencing or controlling nitrification, various statistical tools were used viz. Karl Pearson’s correlation (to find out the relationship between environmental parameters, bacterial abundance and activity), three-way ANOVA (to find out the significant variation between observations), Canonical Discriminant Analysis (CDA) (for the discrimination of stations based on observations), Multivariate statistics, Principal components analysis (PCA) and Step up multiple regression model (SMRM) (First order interaction effects were applied to determine the significantly contributing biological and environmental parameters to the numerical abundance of nitrifiers). In the CE, nitrification is modulated by the complex interplay between different nitrifiers and environmental variables which in turn is dictated by various hydrodynamic characteristics like fresh water discharge and seawater influx brought in by river water discharge and flushing. AOB in the CE are more adapted to varying environmental conditions compared to AOA though the diversity of AOA is higher than AOB. The abundance and seasonality of AOB and NOB is influenced by the concentration of ammonia in the water column. AOB are the major players in modulating ammonia oxidation process in the water column of CE. The distribution pattern and seasonality of AOB and NOB in the CE suggest that these organisms coexist, and are responsible for modulating the entire nitrification process in the estuary. This process is fuelled by the cross feeding among different nitrifiers, which in turn is dictated by nutrient levels especially ammonia. Though nitrification modulates the increasing anthropogenic ammonia concentration the anthropogenic inputs have to be controlled to prevent eutrophication and associated environmental changes.