33 resultados para Clique irreducible graphs
Resumo:
The median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian was studied. Here one maximizes the average distance to the clients. In this paper the mixed case is studied. Clients are represented by a profile, which is a sequence of vertices with repetitions allowed. In a signed profile each element is provided with a sign from f+; g. Thus one can take into account whether the client prefers the facility (with a + sign) or rejects it (with a sign). The graphs for which all median sets, or all antimedian sets, are connected are characterized. Various consensus strategies for signed profiles are studied, amongst which Majority, Plurality and Scarcity. Hypercubes are the only graphs on which Majority produces the median set for all signed profiles. Finally, the antimedian sets are found by the Scarcity Strategy on e.g. Hamming graphs, Johnson graphs and halfcubes
Resumo:
A periphery transversal of a median graph G is introduced as a set of vertices that meets all the peripheral subgraphs of G. Using this concept, median graphs with geodetic number 2 are characterized in two ways. They are precisely the median graphs that contain a periphery transversal of order 2 as well as the median graphs for which there exists a profile such that the remoteness function is constant on G. Moreover, an algorithm is presented that decides in O(mlog n) time whether a given graph G with n vertices and m edges is a median graph with geodetic number 2. Several additional structural properties of the remoteness function on hypercubes and median graphs are obtained and some problems listed
Resumo:
Centrality is in fact one of the fundamental notions in graph theory which has established its close connection with various other areas like Social networks, Flow networks, Facility location problems etc. Even though a plethora of centrality measures have been introduced from time to time, according to the changing demands, the term is not well defined and we can only give some common qualities that a centrality measure is expected to have. Nodes with high centrality scores are often more likely to be very powerful, indispensable, influential, easy propagators of information, significant in maintaining the cohesion of the group and are easily susceptible to anything that disseminate in the network.