37 resultados para Chemicals.
Resumo:
Immortal cell lines have not yet been reported from Penaeus monodon, which delimits the prospects of investigating the associated viral pathogens especially white spot syndrome virus (WSSV). In this context, a method of developing primary hemocyte culture from this crustacean has been standardized by employing modified double strength Leibovitz-15 (L-15) growth medium supplemented with 2% glucose, MEM vitamins (1 ), tryptose phosphate broth (2.95 g l 1), 20% FBS, N-phenylthiourea (0.2 mM), 0.06 lgml 1 chloramphenicol, 100 lgml 1 streptomycin and 100 IU ml 1 penicillin and hemolymph drawn from shrimp grown under a bio-secured recirculating aquaculture system (RAS). In this medium the hemocytes remained viable up to 8 days. 5-Bromo-20-deoxyuridine (BrdU) labeling assay revealed its incorporation in 22 ± 7% of cells at 24 h. Susceptibility of the cells to WSSV was confirmed by immunofluoresence assay using a monoclonal antibody against 28 kDa envelope protein of WSSV. A convenient method for determining virus titer as MTT50/ml was standardized employing the primary hemocyte culture. Expression of viral genes and cellular immune genes were also investigated. The cell culture could be demonstrated for determining toxicity of a management chemical (benzalkonium chloride) by determining its IC50. The primary hemocyte culture could serve as a model for WSSV titration and viral and cellular immune related gene expression and also for investigations on cytotoxicity of aquaculture drugs and chemicals
Resumo:
Lack of shrimp cell lines has hindered the study of pollutants which adversely affects shrimp health and its export value. In this context a primary haemocyte culture developed from Penaeus monodon was employed for assessing the cytotoxicity and genotoxicity of two heavy metal compounds, cadmium chloride and mercuric chloride and two organophosphate insecticides, malathion and monocrotophos. Using MTT assay 12 h IC50 values calculated were 31.09 16.27 mM and 5.52 1.16 mM for cadmium chloride and mercuric chloride and 59.94 52.30 mg l 1 and 186.76 77.00 mg l 1 for malathion and monocrotophos respectively. Employing Comet assay, DNA damage inflicted by these pollutants on haemocytes were evaluated and the pollutants induced DNA damage in >60% of the cells. The study suggested that haemocyte culture could be used as a tool for quantifying cytotoxicity and genotoxicity of aquaculture drugs, management chemicals and pollutants
Resumo:
The date palm Phoenix dactylifera has played an important role in the day-to-day life of the people for the last 7000 years. Today worldwide production, utilization and industrialization of dates are continuously increasing since date fruits have earned great importance in human nutrition owing to their rich content of essential nutrients. Tons of date palm fruit wastes are discarded daily by the date processing industries leading to environmental problems. Wastes such as date pits represent an average of 10% of the date fruits. Thus, there is an urgent need to find suitable applications for this waste. In spite of several studies on date palm cultivation, their utilization and scope for utilizing date fruit in therapeutic applications, very few reviews are available and they are limited to the chemistry and pharmacology of the date fruits and phytochemical composition, nutritional significance and potential health benefits of date fruit consumption. In this context, in the present review the prospects of valorization of these date fruit processing by-products and wastes’ employing fermentation and enzyme processing technologies towards total utilization of this valuable commodity for the production of biofuels, biopolymers, biosurfactants, organic acids, antibiotics, industrial enzymes and other possible industrial chemicals are discussed
Resumo:
In the present study an endeavour has been made to analyse the acute toxicity of WAFs of Bombay High crude and Light Diesel oil on commercially important bivalve species Perna viridis and Perna indica by static bioassay methods. The toxic effects of chemicals in the WAF on the organisms ; their tissues and eventually on rate functions have been elucidated. Marine oil pollution not only affects productivity and quality of marine organisms but also eventually affects the health of human population due to a possible health risk by way of consumption of oil contaminated seafood
Resumo:
The Human race of our century is in gluttonous search for novel engineering products which led to a skyrocketed progress in research and fabrication of filled polymers. Recently, a big window has been opened up for speciality polymers especially elastomers with promising properties. Among the many reasons why rubbers are widely used in the process industries, three are considered as important. Firstly, rubbers operate in a variety of environments and possess usable ranges of deformity and durability and can be exploited through suitable and more or less conventional equipment design principles. Secondly, rubber is an eminently suitable construction material for protection against corrosion in the chemical plant and equipment against various corrosive chemicals as, acids and alkalies and if property tailored, can shield ionising radiations as X-rays and gamma rays in medical industry, with minimum maintenance lower down time, negligible corrosion and a preferred choice for aggressive corroding and ionising environment. Thirdly, rubber can readily and hastily, and at a relatively lower cost, be converted into serviceable products, having intricate shapes and dimensions. In a century’s gap, large employment of flexible polymer materials in the different segments of industry has stimulated the development of new materials with special properties, which paved its way to the synthesis of various nanoscale materials. At nano scale, one makes an entry into a world where multidisciplinary sciences meet and utilises the previously unapproached infinitesimal length scale, having dimension which measure upto one billionth of a meter, to create novel properties. The nano fillers augment the elastomers properties in an astonishing fashion due to their multifunctional nature and unprecedented properties have been exhibited by these polymer-nanocomposites just to beat the shortcomings of traditional micro composites. The current research aims to investigate the possibility of using synthesised nano barium sulphate for fabricating elastomer-based nanocomposites and thereby imparting several properties to the rubber. In this thesis, nano materials, their synthesis, structure, properties and applications are studied. The properties of barium sulphate like chemical resistance and radiopacity have been utilized in the present study and is imparted to the elastomers by preparing composites
Resumo:
Lignocellulosic biomass is probably the best alternative resource for biofuel production and it is composed mainly of cellulose, hemicelluloses and lignin. Cellulose is the most abundant among the three and conversion of cellulose to glucose is catalyzed by the enzyme cellulase. Cellulases are groups of enzymes act synergistically upon cellulose to produce glucose and comprise of endoglucanase, cellobiohydrolase and β-glucosidase. β -glucosidase assumes great importance due to the fact that it is the rate limiting enzyme. Endoglucanases (EG) produces nicks in the cellulose polymer exposing reducing and non reducing ends, cellobiohydrolases (CBH) acts upon the reducing or non reducing ends to liberate cellobiose units, and β - glucosidases (BGL) cleaves the cellobiose to liberate glucose completing the hydrolysis. . β -glucosidases undergo feedback inhibition by their own product- β glucose, and cellobiose which is their substrate. Few filamentous fungi produce glucose tolerant β - glucosidases which can overcome this inhibition by tolerating the product concentration to a particular threshold. The present study had targeted a filamentous fungus producing glucose tolerant β - glucosidase which was identified by morphological as well as molecular method. The fungus showed 99% similarity to Aspergillus unguis strain which comes under the Aspergillus nidulans group where most of the glucose tolerant β -glucosidase belongs. The culture was designated the strain number NII 08123 and was deposited in the NII culture collection at CSIR-NIIST. β -glucosidase multiplicity is a common occurrence in fungal world and in A.unguis this was demonstrated using zymogram analysis. A total 5 extracellular isoforms were detected in fungus and the expression levels of these five isoforms varied based on the carbon source available in the medium. Three of these 5 isoforms were expressed in higher levels as identified by the increased fluorescence (due to larger amounts of MUG breakdown by enzyme action) and was speculated to contribute significantly to the total _- β glucosidase activity. These isoforms were named as BGL 1, BGL3 and BGL 5. Among the three, BGL5 was demonstrated to be the glucose tolerant β -glucosidase and this was a low molecular weight protein. Major fraction was a high molecular weight protein but with lesser tolerance to glucose. BGL 3 was between the two in both activity and glucose tolerance.121 Glucose tolerant .β -glucosidase was purified and characterized and kinetic analysis showed that the glucose inhibition constant (Ki) of the protein is 800mM and Km and Vmax of the enzyme was found to be 4.854 mM and 2.946 mol min-1mg protein-1respectively. The optimumtemperature was 60°C and pH 6.0. The molecular weight of the purified protein was ~10kDa in both SDS as well as Native PAGE indicating that the glucose tolerant BGL is a monomeric protein.The major β -glucosidase, BGL1 had a pH and temperature optima of 5.0 and 60 °C respectively. The apparent molecular weight of the Native protein is 240kDa. The Vmax and Km was 78.8 mol min-1mg protein-1 and 0.326mM respectively. Degenerate primers were designed for glycosyl hydrolase families 1, 3 and 5 and the BGL genes were amplified from genomic DNA of Aspergillus unguis. The sequence analyses performed on the amplicons results confirmed the presence of all the three genes. Amplicon with a size of ~500bp was sequenced and which matched to a GH1 –BGL from Aspergillus oryzae. GH3 degenerate primers producing amplicons were sequenced and the sequences matched to β - glucosidase of GH3 family from Aspergillus nidulans and Aspergillus acculateus. GH5 degenerate primers also gave amplification and sequencing results indicated the presence of GH5 family BGL gene in the Aspergillus unguis genomic DNA.From the partial gene sequencing results, specific as well as degenerate primers were designed for TAIL PCR. Sequencing results of the 1.0 Kb amplicon matched Aspergillus nidulans β -glucosidase gene which belongs to the GH1 family. The sequence mainly covered the N-Terminal region of the matching peptide. All the three BGL proteins ie. BGL1, BGL3 and BGL5 were purified by chromatography an electro elution from Native PAGE gels and were subjected to MALDI-TOF mass spectrometric analysis. The results showed that BGL1 peptide mass matched to . β -glucosidase-I of Aspergillus flavus which is a 92kDa protein with 69% protein coverage. The glucose tolerant β -glucosidase BGL5 mass matched to the catalytic C-terminal domain of β -glucosidase-F from Emericella nidulans, but the protein coverage was very low compared to the size of the Emericella nidulans protein. While comparing the size of BGL5 from Aspergillus unguis, the protein sequence coverage is more than 80%. BGL F is a glycosyl hydrolase family 3 protein.The properties of BGL5 seem to be very unique, in that it is a GH3 β -glucosidase with a very low molecular weight of ~10kDa and at the same time having catalytic activity and glucose 122 tolerance which is as yet un-described in GH β -glucosidases. The occurrence of a fully functional 10kDA protein with glucose tolerant BGL activity has tremendous implications both from the points of understanding the structure function relationships as well as for applications of BGL enzymes. BGL-3 showed similarity to BGL1 of Aspergillus aculateus which was another GH3 β -glucosidase. It may be noted that though PCR could detect GH1, GH3 and GH5 β-glucosidases in the fungus, the major isoforms BGL1 BGL3 and BGL5 were all GH3 family enzymes. This would imply that β-glucosidases belonging to other families may also co-exist in the fungus and the other minor isoforms detected in zymograms may account for them. In biomass hydrolysis, GT-BGL containing BGL enzyme was supplemented to cellulase and the performances of blends were compared with a cocktail where commercial β- glucosidase was supplemented to the biomass hydrolyzing enzyme preparation. The cocktail supplemented with A unguis BGL preparation yielded 555mg/g sugar in 12h compared to the commercial enzyme preparation which gave only 333mg/g in the same period and the maximum sugar yield of 858 mg/g was attained in 36h by the cocktail containing A. unguis BGL. While the commercial enzyme achieved almost similar sugar yield in 24h, there was rapid drop in sugar concentration after that, indicating probably the conversion of glucose back to di-or oligosaccharides by the transglycosylation activity of the BGl in that preparation. Compared this, the A.unguis enzyme containing preparation supported peak yields for longer duration (upto 48h) which is important for biomass conversion to other products since the hydrolysate has to undergo certain unit operations before it goes into the next stage ie – fermentation in any bioprocesses for production of either fuels or chemicals.. Most importantly the Aspergillus unguis BGL preparation yields approximately 1.6 fold increase in the sugar release compared to the commercial BGL within 12h of time interval and 2.25 fold increase in the sugar release compared to the control ie. Cellulase without BGL supplementation. The current study therefore leads to the identification of a potent new isolate producing glucose tolerant β - glucosidase. The organism identified as Aspergillus unguis comes under the Aspergillus nidulans group where most of the GT-BGL producers belong and the detailed studies showed that the glucose tolerant β -glucosidase was a very low molecular weight protein which probably belongs to the glycosyl hydrolase family 3. Inhibition kinetic studies helped to understand the Ki and it is the second highest among the nidulans group of Aspergilli. This has promoted us for a detailed study regarding the mechanism of glucose tolerance. The proteomic 123 analyses clearly indicate the presence of GH3 catalytic domain in the protein. Since the size of the protein is very low and still its active and showed glucose tolerance it is speculated that this could be an entirely new protein or the modification of the existing β -glucosidase with only the catalytic domain present in it. Hydrolysis experiments also qualify this BGL, a suitable candidate for the enzyme cocktail development for biomass hydrolysis
Resumo:
Leachate from an untreated landfill or landfill with damaged liners will cause the pollution of soil and ground water. Here an attempt was made to generate knowledge on concentrations of all relevant pollutants in soil due to municipal solid waste landfill leachate and its migration through soil and also to study the effect of leachate on the engineering properties of soil. To identify the pollutants in soil due to the leachate generated from municipal solid waste landfill site, a case study on an unlined municipal solid waste landfill at Kalamassery has been done. Soil samples as well as water samples were collected from the site and analysed to identify the pollutants and its effect on soil characteristics. The major chemicals in the soil were identified as Ammonia, Chloride, Nitrate, Iron, Nickel, Chromium, Cadmium etc.. Engineering properties of field soil samples show that the chemicals from the leachate of landfill may have effect on the engineering properties of soil. Laboratory experiments were formulated to model the field around an unlined MSW landfill using two different soils subjected to a synthetic leachate. The Maximum change in chemical concentration and engineering property was observed on soil samples at a radial distance of 0.2 m and at a depth of 0.3 m. The pollutant (chemicals) transport pattern through the soil was also studied using synthetic leachate. To establish the effect of pollutants (chemicals) on engineering properties of soil, experiments were conducted on two types soils treated with the synthetic chemicals at four different concentrations. Analyses were conducted after maturing periods of 7, 50, 100 and 150 days. Test soils treated with maximum chemical concentration and matured for 150 days were showing major change in the properties. To visualize the flow of pollutants through soil in a broader sense, the transportation of pollutants through soil was modeled using software ‘Visual MODFLOW’. The actual field data collected for the case study was used to calibrate the modelling and thus simulated the flow pattern of the pollutants through soil around Kalamassery municipal solid waste landfill for an extent of 4 km2. Flow was analysed for a time span of 30 years in which the landfill was closed after 20 years. The concentration of leachate beneath the landfill was observed to be reduced considerably within one year after closure of landfill and within 8 years, it gets lowered to a negligible level. As an environmensstal management measure to control the pollution through leachate, permeable reactive barriers are used as an emerging technology. Here the suitability of locally available materials like coir pith, rice husk and sugar cane bagasse were investigated as reactive media in permeable reactive barrier. The test results illustrates that, among these, coir pith was showing better performance with maximum percentage reduction in concentration of the filtrate. All these three agricultural wastes can be effectively utilized as a reactive material. This research establishes the influence of leachate of municipal solid waste landfill on the engineering properties of soil. The factors such as type of the soil, composition of leachate, infiltration rate, aquifers, ground water table etc., will have a major role on the area of influence zone of the pollutants in a landfill. Software models of the landfill area can be used to predict the extent and the time span of pollution of a landfill, by inputting the accurate field parameters and leachate characteristics. The present study throws light on the role of agro waste materials on the reduction of the pollution in leachate and thus prevents the groundwater and soil from contamination