30 resultados para sickle cell anemia studies
Resumo:
The primary aim of these investigations was to probe the elecnuchemical and material science aspects of some selected metal phthalocyanines(MPcs).Metal phthalocyanines are characterised by a unique planar molecular structure. As a single class of compounds they have been the subject of ever increasing number of physicochemical and technological investigations. During the last two decades the literature on these compounds was flooded by an outpour of original publications and patents. Almost every branch of materials science has benefited by their application-swface coating, printing, electrophotography, photoelectrochemistry, electronics and medicine to name a few.The present study was confined to the electrical and electrochemical properties of cobalt, nickel, zinc. iron and copper phthalocyanines. The use of soluble Pes as corrosion inhibitor for aluminium was also investigated.In the introductory section of the thesis, the work done so far on MPcs is reviewed. In this review emphasis is given to their general methods of synthesis and the physicochemical properties.In phthalocyanine chemistry one of the formidable tasks is the isolation of singular species. In the second chapter the methods of synthesis and purification are presented with necessary experimental details.The studies on plasma modified films of CoPe, FePc, ZnPc. NiPc and CuPc are also presented.Modification of electron transfer process by such films for reversible redox systems is taken as the criterion to establish enhanced electrocatalytic activity.Metal phthalocyanines are p- type semiconductors and the conductivity is enhanced by doping with iodine. The effect of doping on the activation energy of the conduction process is evaluated by measuring the temperature dependent variation of conductivity. Effect of thennal treatment on iodine doped CoPc is investigated by DSC,magnetic susceptibility, IR, ESR and electronic spectra. The elecnucatalytic activity of such doped materials was probed by cyclic voltammetry.The electron transfer mediation characteristics of MPc films depend on the film thickness. The influence of reducing the effective thickness of the MPc film by dispersing it into a conductive polymeric matrix was investigated. Tetrasulphonated cobalt phthalocyanine (CoTSP) was electrostatically immobilised into polyaniline and poly(o-toluidine) under varied conditions.The studies on corrosion inhibition of aluminium by CoTSP and CuTSP and By virtue of their anionic character they are soluble in water and are strongly adsorbed on aluminium. Hence they can act as corrosion inhibitors. CoTSP is also known to catalyze the reduction of dioxygen.This reaction can accelerate the anodic dissolution of metal as a complementary reaction. The influence of these conflicting properties of CoTSP on the corrosion of aluminium was studied and compared with those of CuTSP.In the course of these investigations a number of gadgets like cell for measuring the electrical conductivity of solids under non-isothermal conditions, low power rf oscillator and a rotating disc electrode were fabricated.
Resumo:
Xylanases with hydrolytic activity on xylan, one of the hemicellulosic materials present in plant cell walls, have been identified long back and the applicability of this enzyme is constantly growing. All these applications especially the pulp and paper industries require novel enzymes. There has been lot of documentation on microbial xylanases, however, none meeting all the required characteristics. The characters being sought are: higher production, higher pH and temperature optima, good stabilities under these conditions and finally the low associated cellulase and protease production. The present study analyses various facets of xylanase biotechnology giving emphasis on bacterial xylanases. Fungal xylanases are having problems like low pH values for both enzyme activity and growth. Moreover, the associated production of cellulases at significant levels make fungal xylanases less suitable for application in paper and pulp industries.Bacillus SSP-34 selected from 200 isolates was clearly having xylan catabolizing nature distinct from earlier reports. The stabilities at higher temperatures and pH values along with the optimum conditions for pH and temperature is rendering Bacillus SSP-34 xylanase more suitable than many of the previous reports for application in pulp and paper industries.Bacillus SSP-34 is an alkalophilic thertmotolerant bacteria which under optimal cultural conditions as mentioned earlier, can produce 2.5 times more xylanase than the basal medium.The 0.5% xylan concentration in the medium was found to the best carbon source resulting in 366 IU/ml of xylanase activity. This induction was subjected to catabolite repression by glucose. Xylose was a good inducer for xylanase production. The combination of yeast extract and peptone selected from several nitrogen sources resulted in the highest enzyme production (379+-0.2 IU/ml) at the optimum final concentration of 0.5%. All the cultural and nutritional parameters were compiled and comparative study showed that the modified medium resulted in xylanase activity of 506 IU/ml, 5 folds higher than the basal medium.The novel combination of purification techniques like ultrafiltraton, ammonium sulphate fractionation, DEAE Sepharose anion exchange chromatography, CM Sephadex cation exchange chromatography and Gel permeation chromatography resulted in the purified xylanase having a specific activity of 1723 U/mg protein with 33.3% yield. The enzyme was having a molecular weight of 20-22 kDa. The Km of the purified xylanase was 6.5 mg of oat spelts xylan per ml and Vmax 1233 µ mol/min/mg protein.Bacillus SSP-34 xylanase resulted in the ISO brightness increase from 41.1% to 48.5%. The hydrolytic nature of the xylanase was in the endo-form.Thus the organism Bacillus SSP-34 was having interesting biotechnological and physiological aspects. The SSP-34 xylanase having desired characters seems to be suited for application in paper and pulp industries.
Resumo:
Cell immnhilizatinn technology in a rapidly expanding arna in the endeavour of microbial fnrmentatiwn.During the lnmt 15 years anveral prnceafinn have been developed and more are in developmental atage of approaching commercial utilizatinn.In the present programme it was planned to develop an optimized process for the innobilization of alpha amylase producing Bacillus polymyxa (CBTB 25) an isolate obtained from Cochin University campus primarily for the production of alpha-amylase.Optimal concentration of support material that attributaa stability and maximal activity to the immobilized cell beads was determined using different concentrations of sodium aliginate as support and estimation of amylase production.An overeall assessment of the data obtained for the various studies conducted denotes that immobilized cells synthesize alpha-amylase at comparable rates with free cells and produce reducing sugara at a higher level than free cells.Results indicated that both phosphate and citrate buffers could be used for disrupting the immobilized beads since they enforced maximal release of cells through leaching from the beads within one hour.On comparative analysis it was observed that immobilized cells could synthesize alpha amylase at similar levels with free cells of B.polymyxa.On Co-immobilization of B.Polymyxa with S.cerevisiae,the co-immobilizate beads could effeciently convert starch directly to ethanol with a yield of 14.8% at 1 : 2 ratio.
Resumo:
The thesis embodies the results of a study on the variations in the parameters of productivity of two test species, a chlorophycean alga and a diatom. The chlorophycean alga Scenedesmus abundans was isolated from a fresh water pond whereas the diatom Nitzschia clausii was from the Cochin backwaters. Their growth parameters and their variations due to the effect of addition of some heavy metals have been studied. The growth parameters include biomass, production, respiration, photosynthetic pigments and end products of photosynthesis. The cell numbers were estimated by using a haemocytometer and production and respiration by oxygen light and dark technique. Spectrophotometric analysis for pigments, anthrone method for carbohydrate and heated biuret method for protein were the different methods employed in the present investigation. The present study is confined to nickel, cobalt, trivalent and hexavalent chromium. Different metals are discharged from various industries in and around Cochin. The effects of these metals individually and in combination are studied. Experiments to determine the effects of interaction of metals in combination enabled the assessment of the antagonistic and synergistic effect of metals on test species. The concentration or accumulation of metals on algae was determined by Atomic Absorption Spectrophotometry. The thesis has been divided into seven chapters. The introductory chapter explains the relevance of the present investigation. Chapter two presents the review of literature based on the work in relation to toxicity. Third chapter gives a detailed description of the material and specialized methods followed for the study. The effects of various metals selected for study - nickel, cobalt, trivalent and hexavalent chromium on the qualitative and quantitative aspects of productivity forms the subject of matter of the fourth chapter. The fifth chapter gives the impact of metals in combination on two species of algae. A general discussion and summary are included in the sixth and seventh chapters
Resumo:
Unveiling the molecular and regulatory mechanisms that prevent in vitro transformation in shrimp remains elusive in the development of continuous cell lines, with an arduous history of over 25 years (Jayesh et al., 2012). Despite presenting challenges to researchers in developing a cell line, the billion dollar aquaculture industry is under viral threat. In addition, the regulatory mechanisms that prevent in vitro transformation and carcinoma in shrimps might provide new leads for the development of anti-ageing and anti-cancer interventions in human (Vogt, 2011) and in higher vertebrates. This highlights the importance of developing shrimp cell lines, to bring out effective prophylactics against shrimp viruses and for understanding the mechanism that induce cancer and ageing in human.. Advances in molecular biology and various gene transfer technologies for immortalization of cells have resulted in the development of hundreds of cell lines from insects and mammals, but yet not a single cell line has been developed from shrimp and other marine invertebrates. With this backdrop, the research described in this thesis attempted to develop molecular tools for induced in vitro transformation in lymphoid cells from Penaeus monodon and for the development of continuous cell lines using conventional and novel technologies to address the problems at cellular and molecular level.
Resumo:
The thesis comprises a set of experiments mainly focused on the improvement of L-glutamic acid fennentation. Much attention has been given to use of locally available raw materials, culturing the organism on inert solid substrates and also immobilization of the bacterial cells from the view point of long term utilization of biocatalyst and continuous operation of the stabilized system. Studies were also carried out for the down stream processing for the extraction and purification of L-glutamic acid. An attempt was made to study the morphological features of the microorganism including the cell premeability. In relation with the accumulation of glutamic acid within the cells an approach was made to study the behaviour of the Brevibacterium cells when they are exposed to hyper osmotic environment. Attempts were also made to study the requirement of iron and production of siderophores by this microbial strain. The search for a suitable nitrogen source for glutamate fermentation ended with a promising result that they got a potent urease activity and it can be utilized for many biotransfonnation studies. The entire thesis is presented in three sections, viz. introductory section, experimental section and the concluding section
Resumo:
The group cyanobacteria includes a large number of organisms characterised by a low state of cellular organization. Their cells lack a well defined nucleus. Cell division is by division of the protoplast by an ingrowth of the septum. These organisms are characterised generally by a blue green colouration of the cell, the chief pigments being chlorophyll-a, carotenes, xanthophylls, C phycocyanin and C phycoerythrin. The product of photosynthesis is glycogen. These organisms lack flagellate reproductive bodies and there is a total lack of sexual reproduction. They are also unique because of the presence of murein in the place of cellulose (cell wall) and the absence of chloroplast, mitochondria and endoplasmic reticulum. Just like bacteria some of them possess Plasmids and can fix atmospheric nitrogen. In the present study growth kinetics, heavy metal tolerance, tolerance mechanisms, heavy metal intake, and antibacterial activity of §ynechocystics salina Wislouch - a nanoplanktonic, euryhaline, Cyanobacterium present in Cochin back waters has been carried out for the potential biotechnological application of this organism. _§; salina occur as small spherical cells of 3n diameter (sometimes in pairs) with bluish green colour. The species is characterised by jerky movement of the cells and is structrually similar to other cyanobacteria
Resumo:
In the light of the very huge demand for natural ephedrine and pseudoephidrine, a search for an angiosperm plant containing the alkaloid ephedrine was made and could locate Sida spp. of malvaceae family. Sida is a large genus of, herbs and shrubs distributed throughout the tropics. About a dozen species occur in India. The medicinally important species known are S.rhombrfolia S.cordata and S.spinosa (Anon, 1972). Among the various species, S.rh0mbIfolia is the most widely used one in the traditional system of medicine. An attempt was made in the present study to develop an ideal bioprocess for the in vitro production of ephedrine from the cell culture system of Sida rhombrfolia Linn. ssp. retusa. The callus and suspension culture were initiated and attempts were made to enhance the yield positively by employing various strategies like mutagenesis, immobilization and addition of precursors, elicitors and penneabilizing agents.
Resumo:
The effect of lasers of three wavelengths in the visible region - 476, 488 and 514 nm on mitotic and meiotic cell divisions, growth, yield and activity of specific enzymes were studied in two taxonomically diverse plant species — A/lium cepa L. and Vicia faba. The effect of laser exposures was compared with the effect of two physical mutagens (Gamma and Ultraviolet radiations) and two chemical mutagens (Ethyl Methane Sulphonate and Hydroxyl amine). The study indicated that lasers could be mutagenic causing aberration in the mitotic and meiotic cell divisions while also producing changes in the growth and yield of the plants. Lasers of higher wavelengths 488 and 514 nm caused aberrations in the early stages of mitotic cell division whereas lasers of lower wavelengths (476 nm) caused more aberrations in the later stages of mitotic cell division. Laser exposure of 488 nm wavelength at power density 400 mW induced higher mitotic and meiotic aberrations and also induced higher pollen sterility than lasers of 476 and 514 nm. The frequency of mitotic aberrations induced by lasers was lesser than that caused by y-irradiation but comparable to that induced by EMS and HA. Lasers cause mutations in higher frequencies than UV. Lasers had a stimulatory effect on growth and yield in both plant species. This stimulatory effect of lasers on germination could not however be correlated to the activity of amylase and protease, the key enzymes in seed gennination. Enzymes such as peroxidase and catalase, involved in scavenging of free oxygen radicals often produced by irradiation, did not show increased activity in laser irradiated samples. Further studies are required for elucidating the exact mechanisms by which lasers cause mutations
Resumo:
A new semicarbazone, HL has been synthesized from quinoline-2-carboxaldehyde and N4-phenyl-3- semicarbazide and structurally and spectrochemically characterized. 1H NMR, 13C NMR, IR and electronic spectra of the compound are studied. The existence of keto form in the solid state is supported by the crystal structure and IR data. The compound crystallizes into an orthorhombic space group P212121. Intra and intermolecular hydrogen bonding interactions facilitates unit cell packing in the crystal lattice
Resumo:
A series of novel naphthyridine derivatives 3 and 4 was prepared from substituted pyridine 2 and ketones using ZnCl2 as catalyst under microwave irradiation conditions. All the compounds were evaluated for AChE inhibitory activity and promising compounds 3d, 3e, 4b, and 4g was identified. Representative compounds 3d and 3e were found to show insignificant THLE-2 liver cell viability/toxicity. The binding mode between X-ray crystal structure of human AChE and compounds was studied using molecular docking method and fitness scores were found to be in good correlation with the activity data.
Resumo:
Raman and FTIR spectra of CaFeTi(PO4)3 and CdFeTi(PO4)3 are recorded and analyzed. The observed bands are assigned in terms of vibrations of TiO6 octahedra and PO4 tetrahedra. The symmetry of TiO6 octrahedra and PO4 tetrahedra is lowered from their free ion symmetry. The presence of Fe3+ ion disrupts the Ti–O–P–O–Ti chain and leads to the distortion of TiO6 octrahedra and PO4 tetrahedra. The PO4 3 tetrahedra in both crystals are linearly distorted. The covalency bonding factor of PO4 3 polyanion of both the crystals are calculated from the Raman spectra and compared to that of other Nasicon-type systems. The numerical values of covalency bonding factor indicates that there is a reduction in redox energy and cell voltage and is attributed to strong covalency of PO4 3 polyanionin
Resumo:
Th(BrO3)3·H2O single crystals were grown from its aqueous solution at room temperature. Single crystal XRD, Raman and FTIR techniques were used to investigate the crystal structure. The crystal structure was solved by Patterson method. The as grown crystals are in monoclinic system with space group P21/c. The unit cell parameters are a = 12.8555(18) Å, b = 7.8970(11) Å, c = 9.0716(10) Å, = 90°, = 131.568° and = 90° and unit cell volume is 689.1(2) Å3. Z = 8, R factor is 5.9. The Raman and FTIR studies indicate the lowering of symmetry of bromate anion from C3V to C1. Hydrogen bonds with varying strengths are present in the crystal. The centrosymmetric space group P21/c of the crystal is confirmed by the non-coincidence of majority of Raman and IR bands
Resumo:
In general, linear- optic, thermo- optic and nonlinear- optical studies on CdSe QDs based nano uids and their special applications in solar cells and random lasers have been studied in this thesis. Photo acous- tic and thermal lens studies are the two characterization methods used for thermo- optic studies whereas Z- scan method is used for nonlinear- optical charecterization. In all these cases we have selected CdSe QDs based nano uid as potential photonic material and studied the e ect of metal NPs on its properties. Linear optical studies on these materials have been done using vari- ous characterization methods and photo induced studies is one of them. Thermal lens studies on these materials give information about heat transport properties of these materials and their suitability for applica- tions such as coolant and insulators. Photo acoustic studies shows the e ect of light on the absorption energy levels of the materials. We have also observed that these materials can be used as optical limiters in the eld of nonlinear optics. Special applications of these materials have been studied in the eld of solar cell such as QDSSCs, where CdSe QDs act as the sensitizing materials for light harvesting. Random lasers have many applications in the eld of laser technology, in which CdSe QDs act as scattering media for the gain.
Resumo:
From the early stages of the twentieth century, polyaniline (PANI), a well-known and extensively studied conducting polymer has captured the attention of scientific community owing to its interesting electrical and optical properties. Starting from its structural properties, to the currently pursued optical, electrical and electrochemical properties, extensive investigations on pure PANI and its composites are still much relevant to explore its potentialities to the maximum extent. The synthesis of highly crystalline PANI films with ordered structure and high electrical conductivity has not been pursued in depth yet. Recently, nanostructured PANI and the nanocomposites of PANI have attracted a great deal of research attention owing to the possibilities of applications in optical switching devices, optoelectronics and energy storage devices. The work presented in the thesis is centered around the realization of highly conducting and structurally ordered PANI and its composites for applications mainly in the areas of nonlinear optics and electrochemical energy storage. Out of the vast variety of application fields of PANI, these two areas are specifically selected for the present studies, because of the following observations. The non-linear optical properties and the energy storing properties of PANI depend quite sensitively on the extent of conjugation of the polymer structure, the type and concentration of the dopants added and the type and size of the nano particles selected for making the nanocomposites. The first phase of the work is devoted to the synthesis of highly ordered and conducting films of PANI doped with various dopants and the structural, morphological and electrical characterization followed by the synthesis of metal nanoparticles incorporated PANI samples and the detailed optical characterization in the linear and nonlinear regimes. The second phase of the work comprises the investigations on the prospects of PANI in realizing polymer based rechargeable lithium ion cells with the inherent structural flexibility of polymer systems and environmental safety and stability. Secondary battery systems have become an inevitable part of daily life. They can be found in most of the portable electronic gadgets and recently they have started powering automobiles, although the power generated is low. The efficient storage of electrical energy generated from solar cells is achieved by using suitable secondary battery systems. The development of rechargeable battery systems having excellent charge storage capacity, cyclability, environmental friendliness and flexibility has yet to be realized in practice. Rechargeable Li-ion cells employing cathode active materials like LiCoO2, LiMn2O4, LiFePO4 have got remarkable charge storage capacity with least charge leakage when not in use. However, material toxicity, chance of cell explosion and lack of effective cell recycling mechanism pose significant risk factors which are to be addressed seriously. These cells also lack flexibility in their design due to the structural characteristics of the electrode materials. Global research is directed towards identifying new class of electrode materials with less risk factors and better structural stability and flexibility. Polymer based electrode materials with inherent flexibility, stability and eco-friendliness can be a suitable choice. One of the prime drawbacks of polymer based cathode materials is the low electronic conductivity. Hence the real task with this class of materials is to get better electronic conductivity with good electrical storage capability. Electronic conductivity can be enhanced by using proper dopants. In the designing of rechargeable Li-ion cells with polymer based cathode active materials, the key issue is to identify the optimum lithiation of the polymer cathode which can ensure the highest electronic conductivity and specific charge capacity possible The development of conducting polymer based rechargeable Li-ion cells with high specific capacity and excellent cycling characteristics is a highly competitive area among research and development groups, worldwide. Polymer based rechargeable batteries are specifically attractive due to the environmentally benign nature and the possible constructional flexibility they offer. Among polymers having electrical transport properties suitable for rechargeable battery applications, polyaniline is the most favoured one due to its tunable electrical conducting properties and the availability of cost effective precursor materials for its synthesis. The performance of a battery depends significantly on the characteristics of its integral parts, the cathode, anode and the electrolyte, which in turn depend on the materials used. Many research groups are involved in developing new electrode and electrolyte materials to enhance the overall performance efficiency of the battery. Currently explored electrolytes for Li ion battery applications are in liquid or gel form, which makes well-defined sealing essential. The use of solid electrolytes eliminates the need for containment of liquid electrolytes, which will certainly simplify the cell design and improve the safety and durability. The other advantages of polymer electrolytes include dimensional stability, safety and the ability to prevent lithium dendrite formation. One of the ultimate aims of the present work is to realize all solid state, flexible and environment friendly Li-ion cells with high specific capacity and excellent cycling stability. Part of the present work is hence focused on identifying good polymer based solid electrolytes essential for realizing all solid state polymer based Li ion cells.The present work is an attempt to study the versatile roles of polyaniline in two different fields of technological applications like nonlinear optics and energy storage. Conducting form of doped PANI films with good extent of crystallinity have been realized using a level surface assisted casting method in addition to the generally employed technique of spin coating. Metal nanoparticles embedded PANI offers a rich source for nonlinear optical studies and hence gold and silver nanoparticles have been used for making the nanocomposites in bulk and thin film forms. These PANI nanocomposites are found to exhibit quite dominant third order optical non-linearity. The highlight of these studies is the observation of the interesting phenomenon of the switching between saturable absorption (SA) and reverse saturable absorption (RSA) in the films of Ag/PANI and Au/PANI nanocomposites, which offers prospects of applications in optical switching. The investigations on the energy storage prospects of PANI were carried out on Li enriched PANI which was used as the cathode active material for assembling rechargeable Li-ion cells. For Li enrichment or Li doping of PANI, n-Butyllithium (n-BuLi) in hexanes was used. The Li doping as well as the Li-ion cell assembling were carried out in an argon filled glove box. Coin cells were assembled with Li doped PANI with different doping concentrations, as the cathode, LiPF6 as the electrolyte and Li metal as the anode. These coin cells are found to show reasonably good specific capacity around 22mAh/g and excellent cycling stability and coulombic efficiency around 99%. To improve the specific capacity, composites of Li doped PANI with inorganic cathode active materials like LiFePO4 and LiMn2O4 were synthesized and coin cells were assembled as mentioned earlier to assess the electrochemical capability. The cells assembled using the composite cathodes are found to show significant enhancement in specific capacity to around 40mAh/g. One of the other interesting observations is the complete blocking of the adverse effects of Jahn-Teller distortion, when the composite cathode, PANI-LiMn2O4 is used for assembling the Li-ion cells. This distortion is generally observed, near room temperature, when LiMn2O4 is used as the cathode, which significantly reduces the cycling stability of the cells.