19 resultados para price stability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined use of both radiosonde data and three-dimensional satellite derived data over ocean and land is useful for a better understanding of atmospheric thermodynamics. Here, an attempt is made to study the ther-modynamic structure of convective atmosphere during pre-monsoon season over southwest peninsular India utilizing satellite derived data and radiosonde data. The stability indices were computed for the selected stations over southwest peninsular India viz: Thiruvananthapuram and Cochin, using the radiosonde data for five pre- monsoon seasons. The stability indices studied for the region are Showalter Index (SI), K Index (KI), Lifted In-dex (LI), Total Totals Index (TTI), Humidity Index (HI), Deep Convective Index (DCI) and thermodynamic pa-rameters such as Convective Available Potential Energy (CAPE) and Convective Inhibition Energy (CINE). The traditional Showalter Index has been modified to incorporate the thermodynamics over tropical region. MODIS data over South Peninsular India is also used for the study. When there is a convective system over south penin-sular India, the value of LI over the region is less than −4. On the other hand, the region where LI is more than 2 is comparatively stable without any convection. Similarly, when KI values are in the range 35 to 40, there is a possibility for convection. The threshold value for TTI is found to be between 50 and 55. Further, we found that prior to convection, dry bulb temperature at 1000, 850, 700 and 500 hPa is minimum and the dew point tem-perature is a maximum, which leads to increase in relative humidity. The total column water vapor is maximum in the convective region and minimum in the stable region. The threshold values for the different stability indices are found to be agreeing with that reported in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing popularity of wireless network and its application, mobile ad-hoc networks (MANETS) emerged recently. MANET topology is highly dynamic in nature and nodes are highly mobile so that the rate of link failure is more in MANET. There is no central control over the nodes and the control is distributed among nodes and they can act as either router or source. MANTEs have been considered as isolated stand-alone network. Node can add or remove at any time and it is not infrastructure dependent. So at any time at any where the network can setup and a trouble free communication is possible. Due to more chances of link failures, collisions and transmission errors in MANET, the maintenance of network became costly. As per the study more frequent link failures became an important aspect of diminishing the performance of the network and also it is not predictable. The main objective of this paper is to study the route instability in AODV protocol and suggest a solution for improvement. This paper proposes a new approach to reduce the route failure by storing the alternate route in the intermediate nodes. In this algorithm intermediate nodes are also involved in the route discovery process. This reduces the route establishment overhead as well as the time to find the reroute when a link failure occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics and stability of natural actomyosin (NAM) from rohu (Labeo rohita), catla (Catla catla) and mrigal (Cirrhinus mrigala) were investigated. The total extractable actomyosin (AM) was higher (7.60mgml−1) in the case of rohu compared with that from catla and mrigal (5mgml−1). Although the specific AM ATPase activity was similar (0.43–0.5 μmolPmin−1 mgP−1) among the three species, the total ATPase activity was lower in mrigal (25 μmol g−1 meat) compared with the other species (37 μmol g−1 meat). The inactivation rate constants (kd) of AM Ca ATPase activity showed differences in the stabilities of actomyosin among these fish, the actomyosin from catla being least stable. The NAM from these species was stable up to 20 ◦C at pH 7.0. Catla AM became unstable at 30 ◦C, while rohu and mrigal AM could withstand up to 45 ◦C. The thermal denaturation with respect to solubility, turbidity, ATPase activity, sulphhydryl group and surface hydrophobicity showed noticeable changes at around these temperatures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO2NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drugresistant bacterium. Bacterial sensitivity towards antibiotics and Ag-SiO2NC was studied using standard disc diffusion and death rate assay, respectively. The effect of Ag-SiO2NC on cell wall integrity was monitored using SDS assay and fatty acid profile analysis while the effect on metabolism and genetic stability was assayed microscopically, using CTC viability staining and comet assay, respectively. P. aeruginosa was found to be resistant to β-lactamase, glycopeptidase, sulfonamide, quinolones, nitrofurantoin and macrolides classes of antibiotics. Complete mortality of the bacterium was achieved with 80 μgml-1 concentration of Ag-SiO2NC. The cell wall integrity reduced with increasing time and reached a plateau of 70 % in 110 min. Changes were also noticed in the proportion of fatty acids after the treatment. Inside the cytoplasm, a complete inhibition of electron transport system was achieved with 100 μgml-1 Ag-SiO2NC, followed by DNA breakage. The study thus demonstrates that Ag-SiO2NC invades the cytoplasm of the multiple drug-resistant P. aeruginosa by impinging upon the cell wall integrity and kills the cells by interfering with electron transport chain and the genetic stability