21 resultados para multiple drug resistance


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Emergence of drug resistance among pathogenic bacteria to currently available antibiotics has intensified the search for novel bioactive compounds from unexplored habitats. In the present study actinomycetes were isolated from two relatively unexplored and widely differing habitats such as mountain and wetlands and their ability to produce antibacterial substances were analyzed. Pure cultures of actinomycetes were identified by morphological and biochemical tests. Various genera of actinomycetes encountered included Nocardia, Pseudonocardia, Streptomyces, Nocardiopsis, Streptosporangium, Micromonospora, Rhodococcus, Actinosynnema, Nocardiodes, Kitasatosporia, Gordona, Intrasporangium and Streptoalloteichus. The frequency of occurrence of each genus was found to vary with sample. About 47% of wetland isolates and 33% of mountain isolates were identified as various species of Nocardia. The isolated strains differed among themselves in their ability to decompose proteins and amino acids and also in enzyme production potential. Antibiotic activities of these actinomycetes were evaluated against 12 test pathogenic bacteria by well diffusion method using agar wells in glycerol-yeast extract agar. About 95% of actinomycete isolates from wetland ecosystem and 75% of highland isolates suppressed in different degrees the growth of test pathogens. Relatively high antibacterial activity among these isolates underlined their potential as a source of novel antibiotics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water quality of rooftop-collected rainwater is an issue of increased interest particularly in developing countries where the collected water is used as a source of drinking water. Bacteriological and chemical parameters of 25 samples of rooftop-harvested rainwater stored in ferrocement tanks were analyzed in the study described in this article. Except for the pH and lower dissolved oxygen levels, all other physicochemical parameters were within World Health Organization guidelines. Bacteriological results revealed that the rooftop-harvested rainwater stored in tanks does not often meet the bacteriological quality standards prescribed for drinking water. Fifty percent of samples of harvested rainwater for rural and urban community use and 20% of the samples for individual household use showed the presence of E. coli. Fecal coliform/fecal streptococci ratios revealed nonhuman animal sources of fecal pollution. Risk assessment of bacterial isolates from the harvested rainwater showed high resistance to ampicillin, erythromycin, penicillin, and vancomycin. Multiple antibiotic resistance (MAR) indexing of the isolates and elucidation of the resistance patterns revealed that 73% of the isolates exhibited MAR

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prevalence and antibiotic resistance of Escherichia coli in the water and sediment samples of brackish water aquaculture ponds adjacent to Cochin backwaters was analysed. More than 50% of the water samples and more than 80% of sediment samples from all the sampling stations were tested positive for £. coli. Risk assessment of the E. coli strains was carried out using multiple antibiotic resistance (MAR) indexing. Majority of the strains were found to be multiple antibiotic resistant suggesting their origin from high risk sources of contamination such as human where antibiotics are frequently used. While none of the £. coli strains were resistant against amikacin, chloramphenicol, streptomycin and trimethoprim, considerable levels of resistance was encountered against ampicillin, erythromycin, penicillin G and vancomycin. High prevalence of £. coli in the water and sediment samples of this extensive brackish water ponds indicates high degree of faecal pollution of this environment. The high risk nature of the strains warrants efficient post harvest and processing measures to avoid health risk to consumers

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study diversity of E. coli in the water samples of Cochin estuary were studied for a period of 3 years ranging from January 2010- December 2012. The stations were selected based on the closeness to satellite townships and waste input. Two of the stations (Chitoor and Thevara) were fixed upstream, two in the central part of the estuary namely Bolgatty and Off Marine Science Jetty, and one at the Barmouth. Diversity was assessed in terms of serotypes, phylogenetic groups and genotypes. Two groups of seafood samples such as fish and shellfish collected from the Cochin estuary were used for isolation of E. coli. One hundred clinical E. coli isolates were collected from one public health centre, one hospital and five medical labs in and around Cochin City, Kerala. From our results it was clear that pathogen cycling is occurring through food, water and clinical sources. Pathogen cycling through food is very common and fish and shellfish that harbour these strains might pose potential health risk to consumer. Estuarine environment is a melting pot for various kinds of wastes, both organic and inorganic. Mixing up of waste water from various sources such as domestic, industries, hospitals and sewage released into these water bodies resulting in the co-existence of E. coli from various sources thus offering a conducive environment for horizontal gene transfer. Opportunistic pathogens might acquire genes for drug resistance and virulence turning them to potential pathogens. Prevalence of ExPEC in the Cochin estuary, pose threat to people who use this water for fishing and recreation. Food chain also plays an important role in the transit of virulence genes from the environments to the human. Antibiotic resistant E. coli are widespread in estuarine water, seafood and clinical samples, for reasons well known such as indiscriminate use of antibiotics in animal production systems, aquaculture and human medicine. Since the waste water from these sources entering the estuary provides selection pressure to drug resistant mutants in the environment. It is high time that the authorities concerned should put systems in place for monitoring and enforcement to curb such activities. Microbial contamination can limit people’s enjoyment of coastal waters for contact recreation or shellfish-gathering. E. coli can make people sick if they are present in high levels in water used for contact recreation or shellfish gathering. When feeding, shellfish can filter large volumes of seawater, so any microorganisms present in the water become accumulated and concentrated in the shellfish flesh. If E. coli contaminated shellfish are consumed the impact to human health includes gastroenteritis, urinary tract infections (UTIs), and bacteraemia. In conclusion, the high prevalence of various pathogenic serotypes and phylogenetic groups, multidrug-resistance, and virulence factor genes detected among E. coli isolates from stations close to Cochin city is a matter of concern, since there is a large reservoir of antibiotic resistance genes and virulence traits within the community, and that the resistance genes and plasmid-encoded genes for virulence were easily transferable to other strains. Given the severity of the clinical manifestations of the disease in humans and the inability and/or the potential risks of antibiotic administration for treatment, it appears that the most direct and effective measure towards prevention of STEC and ExPEC infections in humans and ensuring public health may be considered as a priority.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofilm forming multidrug resistant Staphylococcus spp. are major reservoirs for transmission of ophthalmic infections. They were isolated from ocular patients suffering from conjunctivitis. In this study we analyzed biofilm forming ability, antibiotic resistance profile of the Staphylococcus spp. isolated from clinical ocular patients, and their phylogenetic relationship with other community MRSA. Sixty Staphylococcus spp. strains isolated from clinical subjects were evaluated for their ability to form biofilm and express biofilm encoding ica gene. Among them 93% were slime producers and 87% were slime positive. Staphylococcus aureus and S. epidermidis were dominant strains among the isolates obtained from ocular patients. The strains also exhibited a differential biofilm formation quantitatively. Antibiotic susceptibility of the strains tested with Penicillin G, Ciprofloxacin, Ofloxacin, Methicillin, Amikacin, and Gentamicin indicated that they were resistant to more than one antibiotic. The amplicon of ica gene of strong biofilm producing S. aureus strains, obtained by polymerase chain reaction, was sequenced and their close genetic relationship with community acquired MRSA was analyzed based on phylogenetic tree. Our results indicate that they are genetically close to other community acquired MRSA

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes mellitus is a heterogeneous metabolic disorder characterized by hyperglycemia with disturbances in carbohydrate, protein and lipid metabolism resulting from defects in insulin secretion, insulin action or both. Currently there are 387 million people with diabetes worldwide and is expected to affect 592 million people by 2035. Insulin resistance in peripheral tissues and pancreatic beta cell dysfunction are the major challenges in the pathophysiology of diabetes. Diabetic secondary complications (like liver cirrhosis, retinopathy, microvascular and macrovascular complications) arise from persistent hyperglycemia and dyslipidemia can be disabling or even life threatening. Current medications are effective for control and management of hyperglycemia but undesirable effects, inefficiency against secondary complications and high cost are still serious issues in the present prognosis of this disorder. Hence the search for more effective and safer therapeutic agents of natural origin has been found to be highly demanding and attract attention in the present drug discovery research. The data available from Ayurveda on various medicinal plants for treatment of diabetes can efficiently yield potential new lead as antidiabetic agents. For wider acceptability and popularity of herbal remedies available in Ayurveda scientific validation by the elucidation of mechanism of action is very much essential. Modern biological techniques are available now to elucidate the biochemical basis of the effectiveness of these medicinal plants. Keeping this idea the research programme under this thesis has been planned to evaluate the molecular mechanism responsible for the antidiabetic property of Symplocos cochinchinensis, the main ingredient of Nishakathakadi Kashayam, a wellknown Ayurvedic antidiabetic preparation. A general introduction of diabetes, its pathophysiology, secondary complications and current treatment options, innovative solutions based on phytomedicine etc has been described in Chapter 1. The effect of Symplocos cochinchinensis (SC), on various in vitro biochemical targets relevant to diabetes is depicted in Chapter 2 including the preparation of plant extract. Since diabetes is a multifactorial disease, ethanolic extract of the bark of SC (SCE) and its fractions (hexane, dichloromethane, ethyl acetate and 90 % ethanol) were evaluated by in vitro methods against multiple targets such as control of postprandial hyperglycemia, insulin resistance, oxidative stress, pancreatic beta cell proliferation, inhibition of protein glycation, protein tyrosine phosphatase-1B (PTP-1B) and dipeptidyl peptidase-IV (DPPxxi IV). Among the extracts, SCE exhibited comparatively better activity like alpha glucosidase inhibition, insulin dependent glucose uptake (3 fold increase) in L6 myotubes, pancreatic beta cell regeneration in RIN-m5F and reduced triglyceride accumulation in 3T3-L1 cells, protection from hyperglycemia induced generation of reactive oxygen species in HepG2 cells with moderate antiglycation and PTP-1B inhibition. Chemical characterization by HPLC revealed the superiority of SCE over other extracts due to presence of bioactives (beta-sitosterol, phloretin 2’glucoside, oleanolic acid) in addition to minerals like magnesium, calcium, potassium, sodium, zinc and manganese. So SCE has been subjected to oral sucrose tolerance test (OGTT) to evaluate its antihyperglycemic property in mild diabetic and diabetic animal models. SCE showed significant antihyperglycemic activity in in vivo diabetic models. Chapter 3 highlights the beneficial effects of hydroethanol extract of Symplocos cochinchinensis (SCE) against hyperglycemia associated secondary complications in streptozotocin (60 mg/kg body weight) induced diabetic rat model. Proper sanction had been obtained for all the animal experiments from CSIR-CDRI institutional animal ethics committee. The experimental groups consist of normal control (NC), N + SCE 500 mg/kg bwd, diabetic control (DC), D + metformin 100 mg/kg bwd, D + SCE 250 and D + SCE 500. SCEs and metformin were administered daily for 21 days and sacrificed on day 22. Oral glucose tolerance test, plasma insulin, % HbA1c, urea, creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, total protein etc. were analysed. Aldose reductase (AR) activity in the eye lens was also checked. On day 21, DC rats showed significantly abnormal glucose response, HOMA-IR, % HbA1c, decreased activity of antioxidant enzymes and GSH, elevated AR activity, hepatic and renal oxidative stress markers compared to NC. DC rats also exhibited increased level of plasma urea and creatinine. Treatment with SCE protected from the deleterious alterations of biochemical parameters in a dose dependent manner including histopathological alterations in pancreas. SCE 500 exhibited significant glucose lowering effect and decreased HOMA-IR, % HbA1c, lens AR activity, and hepatic, renal oxidative stress and function markers compared to DC group. Considerable amount of liver and muscle glycogen was replenished by SCE treatment in diabetic animals. Although metformin showed better effect, the activity of SCE was very much comparable with this drug. xxii The possible molecular mechanism behind the protective property of S. cochinchinensis against the insulin resistance in peripheral tissue as well as dyslipidemia in in vivo high fructose saturated fat diet model is described in Chapter 4. Initially animal were fed a high fructose saturated fat (HFS) diet for a period of 8 weeks to develop insulin resistance and dyslipidemia. The normal diet control (ND), ND + SCE 500 mg/kg bwd, high fructose saturated fat diet control (HFS), HFS + metformin 100 mg/kg bwd, HFS + SCE 250 and HFS + SCE 500 were the experimental groups. SCEs and metformin were administered daily for the next 3 weeks and sacrificed at the end of 11th week. At the end of week 11, HFS rats showed significantly abnormal glucose and insulin tolerance, HOMA-IR, % HbA1c, adiponectin, lipid profile, liver glycolytic and gluconeogenic enzyme activities, liver and muscle triglyceride accumulation compared to ND. HFS rats also exhibited increased level of plasma inflammatory cytokines, upregulated mRNA level of gluconeogenic and lipogenic genes in liver. HFS exhibited the increased expression of GLUT-2 in liver and decreased expression of GLUT-4 in muscle and adipose. SCE treatment also preserved the architecture of pancreas, liver, and kidney tissues. Treatment with SCE reversed the alterations of biochemical parameters, improved insulin sensitivity by modifying gene expression in liver, muscle and adipose tissues. Overall results suggest that SC mediates the antidiabetic activity mainly via alpha glucosidase inhibition, improved insulin sensitivity, with antiglycation and antioxidant activities.