39 resultados para mould powder


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polytetrafluoroethylene (PTFE) composites filled with Sr2Ce2Ti5O16 ceramic were prepared by a powder processing technique. The structures and microstructures of the composites were investigated by X-ray diffraction and scanning electron microscopy techniques. Differential scanning calorimetry showed that the ceramic filler had no effect on the melting point of the PTFE. The effect of the Sr2Ce2Ti5O16 ceramic content [0–0.6 volume fraction (vf)] on the thermal conductivity, coefficient of thermal expansion (CTE), specific heat capacity, and thermal diffusivity were investigated. As the vf of the Sr2Ce2Ti5O16 ceramic increased, the thermal conductivity of the specimen increased, and the CTE decreased. The thermal conductivity and thermal expansion of the PTFE/Sr2Ce2Ti5O16 composites were improved to 1.7 W m21 8C21 and 34 ppm/8C, respectively for 0.6 vf of the ceramics. The experimental thermal conductivity and CTE were compared with different theoretical models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vanadia/ceria catalysts (2–10 wt% of V2O5) were prepared by wet impregnation of ammonium metavanadate in oxalic acid solution. Structural characterization was done with energy dispersive X-ray analysis (EDX), powder X-ray diffraction (XRD), BET surface area measurements, FT-IR spectroscopy and nuclear magnetic spectral analysis (51V MASNMR). XRD and 51V MASNMR results show highly dispersed vanadia species at lower loadings and the formation of CeVO4 phase at higher V2O5 loading. The catalytic activity of catalysts was conducted in liquid phase oxidation of ethylbenzene with H2O2 as oxidant. The oxidation activity is increased with loading up to 8 wt% V2O5 and then decreased with further increase in V2O5 content to 10 wt%. Different vanadia species evidenced by various techniques were found to be selective towards ethylbenzene oxidation. The CeVO4 formation associated with increased concentration of vanadia on ceria results the production of acetophenone along with 2-hydroxyacetophenone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we present the results of our attempt to build a compact photothermal spectrometer capable of both manual and automated mode of operation.The salient features of the system include the ability to analyse thin film, powder and polymer samples. The tool has been in use to investigate thermal, optical and transport properties. Binary and ternary semiconducting thin films were analysed for their thermal diffusivities. The system could perform thickness measurements nondestructively. Ion implanted semiconductors are widely studied for the effect of radiation induced defects. We could perform nondestructive imaging of defects using our spectrometer.The results reported in his thesis on the above in addition to studies on In2S3 and transparent conducting oxide ZnO have been achieved with this spectrometer. Various polymer samples have been easily analysed for their thermal diffusivities. The technique provided ease of analysis not achieved with conventional techniques like TGA and DSC. Industrial application of the tool has also been proved by analyzing defects of welded joints and adhesion of paints. Indigenization of the expensive lock-in-amplifier and automation has been the significant achievement in the course of this dissertation. We are on our way to prove the noise rejection capabilities of our PC LIA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanosized ZnO was prepared by polyol synthesis. Fluorescence spectrum of the ZnO colloid at varying pump intensities was studied. The powder was extracted and characterized by XRD and BET. The extracted powder was screen printed on glass substrates using ethyl cellulose as binder and turpinol as solvent. Coherent back scattering studies were performed on the screen printed sample which showed evidence of weak localization. The screen printed pattern showed strong UV emission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this thesis work is to optimize the growth conditions for obtaining crystalline and conducting Lao.5Sro.5Co03 (LSCO) and Lao.5Sro.5Coo.5.5Nio.5O3 (LSCNO) thin films at low processing temperatures. The films are prepared by radio frequency magnetron sputtering under various deposition conditions. The thin films were used as electrodes for the fabrication of ferroelectric capacitors using BaO.7SrO.3 Ti03 (BST) and PbZro.52 Tio.4803 (PZT). The structural and transport properties of the La1_xSrxCo03 and Lao.5Sro.5Co1_xNix03 are also investigated. The characterization of the bulk and the thin films were performed using different tools. A powder X-ray diffractometer was used to analyze the crystalline nature of the material. The transport properties were investigated by measuring the temperature dependence of resistivity using a four probe technique. The magnetoresistance and thermoelectric power were also used to investigate the transport properties. Atomic force microscope was used to study the surface morphology and thin film roughness. The ferroelectric properties of the capacitors were investigated using RT66A ferroelectric tester.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various synthesis routes have been developed in recent years for the preparation of nanoparticles. One of those methods is polymer induced crystallization. The first objective of the present work was to prepare nano ZnO powder by polymer induced crystallization in chitosan solution and to characterize the material using different techniques like TEM, SEM, XRD, FTLR, UV spectroscopy, TGA, DSC etc.The second object of the study is to prepare composites using nano ZnO. It has been undertaken to explore the potential of nano ZnO as reinforcement in engineering as well as commodity thermoplastics to widen their application spectra. We selected three engineering thermoplastics like [poly ethylene terephthalate, polyamide 6, and polycarbonate] and three commodity plastics like [polypropylene, high density polyethylene, and polystyrene] for the study. To date one of the few disadvantages associated with nanoparticle incorporation has concerned toughness and impact performance. Modification of polymers could reduce impact performance. The present study also focused on whether nano ZnO can act as a modifier for thennoplastics, without sacrificing their impact strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, radio frequency plasma polymerization technique is used to prepare thin films of polyaniline, polypyrrole, poly N-methyl pyrrole and polythiophene. The thermal characterization of these films is carried out using transverse probe beam deflection method. Electrical conductivity and band gaps are also determined. The effect of iodine doping on electrical conductivity and the rate of heat diffusion is explored.Bulk samples of poyaniline and polypyrrole in powder form are synthesized by chemical route. Open photoacoustic cell configuration is employed for the thermal characterization of these samples. The effect of acid doping on heat diffusion in these bulk samples of polyaniline is also investigated. The variation of electrical conductivity of doped polyaniline and polypyrrole with temperature is also studied for drawing conclusion on the nature of conduction in these samples. In order to improve the processability of polyaniline and polypyrrole, these polymers are incorporated into a host matrix of poly vinyl chloride. Measurements of thermal diffusivity and electrical conductivity of these samples are carried out to investigate the variation of these quantities as a function of the content of polyvinyl chloride.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A phantom that exhibits complex dielectric properties similar to low-water-content biological tissues over the electromagnetic spectrum of 2000–3000 MHz has been synthesized from carbon black, graphite powder, and poly vinyl acetate (PVA)-based adhesive. The material overcomes various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the material for various concentrations of carbon and graphite are studied. A combination of 50% poly-vinyl-acetate-based adhesive, 20% carbon, and 30% graphite exhibits a high absorption coefficient, which suggests another application of the material as a good microwave absorber for the interior lining of tomographic chamber in microwave imaging. The cavity-perturbation technique is adopted to study the dielectric properties of the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phantoms that exhibit complex dielectric properties similar to low water content biological tissues over the electromagnetic spectrum of 2–3 GHz have been synthesized from carbon black powder, graphite powder and polyvinyl-acetate-based adhesive. The materials overcome various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the materials for various compositions of carbon black and graphite powder are studied. A combination of 50% polyvinylacetate- based adhesive, 20% carbon black powder and 30% graphite powder exhibits high absorption coefficient, which suggests another application of the material as good microwave absorber for interior lining of tomographic chamber in microwave imaging. Cavity perturbation technique is adopted to study the dielectric properties of the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of catalysis research is to apply the catalyst successfully in economically important reactions in an environmentally friendly way. The present work focuses on the modification of structural and surface properties of ceria and ceria-zirconia catalysts by the incorporation of transition metals. The applications of these catalysts in industrially important reactions like ethylbenzene oxidation, alkylation of aromatics are also investigated.Sol-gel method is effective for the preparation of transition metal modified ceria and ceria-zirconia mixed oxide since it produces catalyst with highly dispersed incorporated metal. Unlike that of impregnation method plugging of pores is not prominent for sol-gel derived catalyst materials. This prevents loss of surface area on metal modification as evident for BET surface area measurements.The powder X-ray diffraction analysis confirms the cubic structure of transition metal modified ceria and ceria-zirconia catalysts. The thermal stability is evident from TGA/DTA analysis. DR UV-vis spectra provide information on the coordination environment of the incorporated metal. EPR analysis ofCr, Mn and Cu modified ceria and a ceria-zirconia catalyst reveals the presence of different oxidation states of incorporated metal.Temperature programmed desorption of ammonia and thermogravimetric desorption of 2,6-dimethyl pyridine confirms the enhancement of acidity on metal incorporation. High a-methyl styrene selectivity in cumene cracking reaction implies the presence of comparatively more number of Lewis acid sites with some amount of Bronsted acid sites. The formation of cyclohexanone during cyclohexanol decomposition confirms the presence of basic sites on the catalyst surface.Mn and Cr modified catalysts show better activity towards ethylbenzene oxidation. A redox mechanism through oxometal pathway is suggested.All the catalysts were found to be active towards benzylation of toluene and a-xylene. The selectivity towards monoalkylated products remains almost 100%. The catalytic activity is correlated with the Lewis acidity of the prepared systems.The activity of the catalysts towards methylation of phenols depends on the strength acid sites as well as the redox properties of the catalysts. A strong dependence of methylation activity on the total acidity is illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present studies, various copper delafossite materials viz; CuAlO2, CuGaO2, CuFeO2 , CuGa1-xFexO2, CuYO2 and CuCaxY1-xO2 were synthesised by solid state reaction technique. These copper delafossite materials were grown in thin film form by rf magnetron sputtering technique. In general copper delafossites exhibit good optical transparency. The conductivity of the CuYO2 could be improved by Ca doping or by oxygen intercalation by annealing the film in oxygen atmosphere. It has so far been impossible to improve the p-type conductivity of CuGaO2 significantly by doping Mg or Ca on the Ga site. The ptype conductivity is presumed to be due to oxygen doping or Cu Vacancies [6]. Reports in literature show, oxygen intercalation or divalent ion doping on Ga site is not possible for CuGaO2 thin films to improve the p-type conductivity. Sintered powder and crystals of CuFeO2 have been reported as the materials having the highest p-type conductivity [14, 15] among the copper and silver delafossites. However the CuFeO2 films are found to be less transparent in the visible region compared to CuGaO2. Hence in the present work, the solid solution between the CuGaO2 and CuFeO2 was effected by solid state reaction, varying the Fe content. The CuGa1-xFexO2 with Fe content, x=0.5 shows an increase in conductivity by two orders, compared to CuGaO2 but the transparency is only about 50% in the visible region which is less than that of CuGaO2 The synthesis of α−AgGaO2 was carried out by two step process which involves the synthesis of β-AgGaO2 by ion exchange reaction followed by the hydrothermal conversion of the β-AgGaO2 into α-AgGaO2. The trace amount of Ag has been reduced substantially in the two step synthesis compared to the direct hydrothermal synthesis. Thin films of α-AgGaO2 were prepared on silicon and Al2O3 substrates by pulsed laser deposition. These studies indicate the possibility of using this material as p-type material in thin film form for transparent electronics. The room temperature conductivity of α-AgGaO2 was measured as 3.17 x 10-4 Scm-1and the optical band gap was estimated as 4.12 eV. A transparent p-n junction thin film diode on glass substrate was fabricated using p-type α-AgGaO2 and n-ZnO.AgCoO2 thin films with 50% transparency in the visible region were deposited on single crystalline Al2O3 and amorphous silica substrates by RF magnetron sputtering and p type conductivity of AgCoO2 was demonstrated by fabricating transparent p-n junction diode with AgCoO2 as p-side and ZnO: Al as n-side using sputtering. The junction thus obtained was found to be rectifying with a forward to reverse current of about 10 at an applied voltage of 3 V.The present study shows that silver delafossite thin films with p-type conductivity can be used for the fabrication of active devices for transparent electronics applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dielectric properties of polyaniline at different frequencies were studied. Cavity perturbation technique was employed for the study. Poly aniline in the powder and pelletised forms were prepared under different environmental conditions. Different samples of poly aniline exhibit high conductivity. However. the conductivity of samples prepared under different environmental conditions is found to vary. All the samples in the powder form have high conductivity irrespective of the method of preparation. The high conductivity at microwave frequency makes it possible to be used for developing microwave components like filters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis Entitled INVESTIGATIONS ON THE STRUCTURAL, OPTICAL AND MAGNETIC PROPERTIES OF NANOSTRUCTURED CERIUM OXIDE IN PURE AND DOPED FORMS AND ITS POLYMER NANOCOMPOSITES.Synthesis and processing of nanomatelials and nanostmctures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology,crystal structure and chemical composition.Recently, several methods have been developed to prepare pure and doped CeO2 powder, including wet chemical synthesis, thermal hydrolysis, flux method, hydrothermal synthesis, gas condensation method, microwave technique etc. In all these, some special reaction conditions, such as high temperature, high pressure, capping agents, expensive or toxic solvents etc. have been involved.Another hi gh-li ght of the present work is room temperature ferromagnetism in cerium oxdie thin films deposited by spray pyrolysis technique.The observation of self trapped exciton mediated PL in ceria nanocrystals is another important outcome of the present study. STE mediated mechanism has been proposed for CeO2 nanocrystals based on the dependence of PL intensity on the annealing temperature. It would be interesting to extent these investigations to the doped forms of cerium oxide and cerium oxide thin films to get deeper Insight into STE mechanism.Due to time constraints detailed investigations could not be canied out on the preparation and properties of free standing films of polymer/ceria nanocomposites. It has been observed that good quality free standing films of PVDF/ceria, PS/C61‘l8, PMMA/ceria can be obtained using solution casting technique. These polymer nanocomposite films show high dielectric constant around 20 and offer prospects of applications as gate electrodes in metal-oxide semiconductor devices.