48 resultados para metal(II) complexes
Resumo:
Coordination chemistry of schiff bases is of considerable interest due to their various magnetic, catalytic and biological applications. Here it describes the spectral characterization of schiff bases and its Mn (II), Cu (II) and Ni (II) complexes. Then synthesis and spectral characterization of Zn (II), Cd (II) and Co (II) complexes of schiff base derived from 3-Formylsalicilic Acid and 1,3-diaminopropane. Then it discusses the synthesis and spectral studies of Copper (II) complexes of 2-Hydroxyacetophenone N-phenyl semicarbazone. Finally it discusses the synthesis and spectral characterization of Co (III) complexes of salicylaldehyde N-phenyl semicarbazone. The preparation and characterization of Cobalt (III) complexes of salicylaldehyde, N-phenylthiosemicarbazone containing hetrocyclic bases phenalthroline and bipyridine. Thiocyanate, azide and perchlorate ions act as coligands. Elemental analysis suggests +3 state for Cobalt. HNMR, IR and UV-visible spectra characterize the complexes.
Resumo:
In this regard Schiff base complexes have attracted wide attention. Furthermore, such complexes are found to play important role in analytical chemistry, organic synthesis, metallurgy, refining of metals, electroplating and photography. Many Schiff base complexes are reported in literature. Their properties depend on the nature of the metal ion as well as on the nature of the ligand. By altering the ligands it is possible to obtain desired electronic environment around the metal ion. Thus there is a continuing interest in the synthesis of simple and zeolite encapsulated Schiff base complexes of metal ions. Zeolites have a number of striking structural similarities to the protein portion of natural enzymes. Zeolite based catalysts are known for their remarkable ability of mimicking the chemistry of biological systems. In view of the importance of catalysts in all the areas of modern chemical industries, an effort has been made to synthesize some simple Schiff base complexes, heterogenize them by encapsulating within the supercages of zeoliteY cavities and to study their applications. The thesis deals with studies on the synthesis and characterization of some simple and zeoliteY encapsulated Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes and on the catalytic activity of these complexes on some oxidation reactions. Simple complexes were prepared from the Schiff base ligands SBT derived from 2-aminobenzothiazole and salicylaldehyde and the ligand VBT derived from 2-aminobenzothiazole and vanillin (4-hydroxy-3- methoxybenzaldehyde). ZeoliteY encapsulated Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes of Schiff base ligands SBT and VBT and also of 2-aminobenzothiazole were synthesized. All the prepared complexes were characterized using the physico-chemical techniques such as chemical analysis (employing AAS and CHN analyses), magnetic moment studies, conductance measurements and electronic and FTIR spectra. EPR spectra of the Cu(II) complexes were also carried out to know the probable structures and nature of Cu(II) complexes. Thermogravimetric analyses were carried out to obtain the information regarding the thermal stability of various complexes. The successful encapsulations of the complexes within the cavities of zeoliteY were ascertained by XRD, surface area and pore volume analysis. Assignments of geometries of simple and zeoliteY encapsulated complexes are given in all the cases. Both simple and zeoliteY encapsulated complexes were screened for catalytic activity towards oxidation reactions such as decomposition of hydrogen peroxide, oxidation of benzaldehyde, benzyl alcohol, 1-propanol, 2-propanol and cyclohexanol.
Studies on Some Transition Metal Complexes of Schiff Bases Derived from Quinoxaline-2-carboxaldehyde
Resumo:
Two series of transition metal complexes of Schiff bases derived from quinoxaline-2-carboxaldehyde with semicarbazide (QSC) and furfurylamine (QFA) were synthesised and characterised by elemental analyses, molar conductance and magnetic susceptibility measurements, IR, electronic and EPR spectral studies. The QSC complexes have the general formula [M(QSC)Cl2]. A tetrahedral structure has been assigned for the Mn(II), Co(II) and Ni(II) complexes and a square-planar structure for the Cu(II) complex. The QFA complexes have the formula [M(QFA)2Cl2]. An octahedral structure has been assigned for these complexes. All of the complexes exhibit catalytic activity towards the oxidation of 3,5-di-tert-butylcatechol (DTBC) to 3,5-di-tert-butylquinone (DTBQ) using atmospheric oxygen. The cobalt(II) complex of the ligand QFA was found to be the most active catalyst.
Resumo:
The thesis deals with studies on the synthesis, characterisation and catalytic applications of some new transition metal complexes of the Schiff bases derived from 3-hydroxyquinoxaline 2-carboxaldehyde.. Schiff bases which are considered as ‘privileged ligands’ have the ability to stabilize different metals in different oxidation states and thus regulate the performance of metals in a large variety of catalytic transformations. The catalytic activity of the Schiff base complexes is highly dependant on the environment about the metal center and their conformational flexibility. Therefore it is to be expected that the introduction of bulky substituents near the coordination sites might lead to low symmetry complexes with enhanced catalytic properties. With this view new transition metal complexes of Schiff bases derived from 3-hydroxyquinoxaline-2-carboxaldehyde have been synthesised. These Schiff bases have more basic donor nitrogen atoms and the presence of the quinoxaline ring may be presumed to build a favourable topography and electronic environment in the immediate coordination sphere of the metal. The aldehyde was condensed with amines 1,8-diaminonaphthalene, 2,3-diaminomaleonitrile, 1,2-diaminocyclohexane, 2-aminophenol and 4-aminoantipyrine to give the respective Schiff bases. The oxovanadium(IV), copper(II) and ruthenium(II)complexes of these Schiff bases were synthesised and characterised. All the oxovanadium(IV) complexes have binuclear structure with a square pyramidal geometry. Ruthenium and copper form mononuclear complexes with the Schiff base derived from 4- aminoantipyrine while binuclear square planar complexes are formed with the other Schiff bases. The catalytic activity of the copper complexes was evaluated in the hydroxylation of phenol with hydrogen peroxide as oxidant. Catechol and hydroquinone are the major products. Catalytic properties of the oxovanadium(IV) complexes were evaluated in the oxidation of cyclohexene with hydrogen peroxide as the oxidant. Here allylic oxidation products rather than epoxides are formed as the major products. The ruthenium(II) complexes are found to be effective catalysts for the hydrogenation of benzene and toluene. The kinetics of hydrogenation was studied and a suitable mechanism has been proposed.
Resumo:
Dept.of Applied Chemistry, Cochin University of Science and Technology
Resumo:
Department of Applied Chemistry, Cochin University of Science and Technology
Resumo:
The present work is concentrated on the studies of two novel semicarbazones, di-2-pyridyl ketone-N4-phenyl-3-semicarbazone (HL1) and quinoline-2-carboxaldehyde-N4-phenyl-3-semicarbazone (HL2). The compositions of these semicarbazones were determined by the CHN analyses. For the characterization of these compounds we have used IR, UV and NMR spectral studies. The molecular structure of quinoline-2-carboxaldehyde-N4-phenyl-3- semicarbazone (HL2) was obtained by single crystal X-ray diffraction studies. Also, we have synthesized Zn(II), Cd(II), Cu(II), Ni(II), Co(II) and Mn(II) complexes of these semicarbazones, HL1 and HL2. These complexes were characterized by various spectroscopic techniques, magnetic and conductivity studies. We could isolate single crystals of some Zn(II) and Cd(II) compounds suitable for X-ray diffraction studies. For other complexes we could not isolate single crystals of good quality for single crystal X-ray diffraction studies.
Resumo:
Metallo-organic chemistry,incorporating the frontiers of both inorganic and organic chemical aspects,is a topic of utility concern.The first exploration of coordinated metal complexes dates back to the ninettenth century,during the days of Alfred Werner.Thereafter,inorganic chemistry witnessed a great outflow of coordination compounds,with unique structural characteristics and diverse applicatons.The diversity in structures exhibited by the coordination complexes of multidentate ligands have led to their usage as sensors,models for enzyme mimetic centers,medicines etc.The liganda chosen are of prime importance in determining the properties of coordination compounds.Schiff bases are compounds obtained by the condensation of an aidehyde or ketone with an amine.The chemical properties of Schiff bases and their complexes are widely explored in recent years owing to their pharmacological activity,their catalytic activities and so on.On the other hand pseudohalides like azide and thiocyanate are versatile candidates for the construction of dimeric or polymeric complexes having excellent properties and diverse applications.So a combination of the Schiff bases and the pseudohalogens for the synthesis of metal complexes can bring about interesting results.An attempt into this area is the besis of this Ph.D theis.
Resumo:
Coordination chemistry of pentadentate 2,6-diacetylpyridine bis(thiosemicarbazone) Schiff base ligands has been intensively studied due to the versatility of the molecular chain in order to obtain very different geometries as well as their broad therapeutic activity. Metal complexes of thiosemicarbazone with aldehydes and ketones have been widely reported. But there have been fewer reports on potential pentadentate bis(thiosemicarbazones) formed from 2,6-diacetylpyridine. Keeping these in view, we have synthesized four bis(thiosemicarbazone) systems with 2,6-diacetylpyridine. In the present work, the chelating behavior of bis(thiosemicarbazones) are studied, with the aim of investigating the influence of coordination exerts on their conformation and or configuration, in connection with the nature of the metal and of the counter ion. The selection of the 2,6-diacetylpyridine as the ketonic part was based on its capability to form polynuclear complexes with different coordination number. The doubled armed bis(thiosemicarbazones) can coordinate to a metal centre as dianionic ligand by losing its amide protons or it can coordinate as monoanionic ligand by losing its amide proton from one of the thiosemicarbazone moiety or it can also be coordinate as neutral ligand. Hence it is interesting to explore the coordinating capabilities of these ligands whether in neutral form or anionic form and to study the structural variations occurring in the ligands during complexation such as change in conformation.
Resumo:
Schiff base complexes of transition metal ions have played a significant role in coordination chemistry.In the present study we have synthesized some new Mn(II),Co(II) and Cu(II) complexes of Schiff bases derived from 1,8-diaminonaphthalene.Even though we could not isolate theses Schiff bases (as they readily cyclise to form the perimidine compounds),we were able to characterize unequivacally the complexes synthesized from these compounds as complexes of Schiff Bases. We Synthesized three perimidine derivatives ,2-(quinoxalin-2-yl)-2,3-dihydro-1H-perimidine,2-(2,3-dihydro-1H-perimidin-2-yl)-6-methoxyphenol and 4-(2,3-dihyro-1H-perimidin-2-yl)-2-methoxyphenol by the condensation of 1,8-diaminonaphthalene with quinoxaline-2-carboxaldehyde,2- hydroxy-3-methoxybenzaldehyde or 4-hydroxy-3-methoxybenzaldehyde respectively.Theses compounds were used as precursor ligands for the preparation of Schiff base complexes.The complexes were characterized by using elemental analysis ,conductance and magnetic susceptibility measuremets ,infrared and UV-Visible spectroscopy ,thermogravimetric analysis and EPR spectroscopy .We also encapsulated the complexes in zeolite Y matrix and these encapsulated complexes were also characterized. We have also tried theses complexes as catalysts in the oxidation of cyclohexanol and decomposition of hydrogen peroxide.
Resumo:
In the present work,the chelating behaviour of thiosemicarbazones of a heterocyclic diketone, 2,6-diacetylpyridine is studied,with the aim of investigating the influence coordination exerts on their conformation and /or configuration, in connection with the nature of the metal and of the counter ion.The various possibilities like unsubstitution,ring incorporation at terminal nitrogen and condensation of one of the ketone group alone have been tried for ligand selection.Mainly first row transition metals like manganese,iron,nickel,copper,zinc and cadmium are studied.Metals like cobalt also were studied but could not result in fruitful isolation of the compound due to solubility problems.Different spectroscopic and characterization techniques have been utilized to reveal the nature of the metal and the ligands in coordinated metal complex.
Resumo:
Studies on transition metal complexes have achieved a great interest due to their versatile applications.The convenient route for synthesis,the nature of ligands and stability of metal complexes has significant contributions in their applications in medicine,biology,catalysis and photonics.The present work deals wth the synthesis and characterization of metal complexes of some tridentate acylhydrazones .Hydrazones are promising ligands in coordination chemistry with interesting binding modes and applications.The acylhydrazones chosen for the current study are capable of forming complexes in different forms through tautomerism.
Resumo:
The present work deals with the complexation of Schiff bases of aroylhydrazines with various transition metal ions. The hydrazone systems selected for study have long 7I:-delocalized chain in the ligand molecule itself, which get intensified due to metal-to-ligand or ligand-to-metal charge transfer excitations upon coordination. Complexation with metal ions like copper, nickel, cobalt, manganese, iron, zinc and cadmium are tried. Various spectral techniques are employed for characterization. The structures of some complexes have been well established by single crystal X-ray diffraction studies. The nonIinaer optical studies of the ligands and complexes synthesized have been studied by hyper-Rayleigh scattering technique.The work is presented in seven chapters and the last one deals with summary and conclusion. One of the hydrazone system selected for study proved that it could give rise to polymeric metal complexes. Some of the copper, nickel, zinc and cadmium complexes showed non-linear optical activity. The NLO studies of manganese and iron showed negative result, may be due to the inversion centre of symmetry within the molecular lattice.
Resumo:
This thesis is mainly concerned with the synthesis and characterisation of new simple and zeolite encapsulated transition metal (manganese(II),nickel(II),and copper(II)complexes of quinoxaline based double Schiff base ligands.Theses ligands are N,N'-bis(quinoxaline-2-carboxalidene)hydrazine,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminoethane,N,N'-bis(quinoxaline-2-carboxalidene)-1,3-diamonopropane,N,N'-bis(quinoxaline-2-carboxalidene)-1,4-diaminobutane,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminocyclohexane and N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminobenzene.The Schiff base ligands have been characterised by spectral and single crystal XRD studies.Theses ligands provide great structural diversity during complexation.Mn(II) and Ni(II) form octahedral with these Schiff bases,whereas Cu(II) forms both octahedral and tetrahedral complexes.Studies on the biological and Catalytic activity of the copper(ll) complexes are also presented in this thesis.
Resumo:
The thesis is an introduction to evaluate the coordination behaviour of a few compounds of our interest. The crucial aim of these investigations was to synthesize and characterize some transition metal complexes using the ligands benzaldehyde, 2-hydroxybenzaldehyde and 4-methoxybenzaldehyde N(4)-ring incorporated thiosemicarbazones.The study involves a brief foreword of the metal complexes of thiosemicarbazones including their bonding, stereochemistry and biological activities.The different analytical and spectroscopic techniques used for the analysis of the ligands and their complexes are discussed.It also deals with the synthesis and spectral characterization of the thiosemicarbazones and single crystal X-ray diffraction study of one of them.Chapter 3 describes the synthesis, spectral characterization, single crystal X-ray diffraction studies of copper(ll) complexes with ONS/NS donor thiosemicarbazones. Chapter 4 deals with the synthesis, spectral characterization and single crystal X-ray diffraction studies of nickel(II) complexes. Chapter 5 contains the synthesis, structural and spectral characterization of the cobalt(III) complexes. Chapters 6 and 7 include the synthesis, structural and spectral characterization of zinc(II) and cadmium(ll) complexes with ONS/NS donor thiosemicarbazones.