34 resultados para lattice enthalpy
Resumo:
Mn1-xZnxFe2O4 nanoparticles (x=0-1) were synthesized by wet chemical co-precipitation techniques. X-ray diffraction, transmission electron microscopy and high-resolution transmission electron microscopy were effectively utilized to investigate the different structural parameters. The elemental analysis was conducted using energy-dispersive spectrum and inductively coupled plasma analysis. The magnetic properties such as magnetization and coercivity were measured using vibrating sample magnetometer. The observed magnetization values of the nanoparticles were found to be lower compared to the bulk counterpart. The magnetization showed a gradual decrease with zinc substitution except for a small increase from x=0.2 to 0.3. The Curie temperature was found to be enhanced in the case of ferrites in the nanoregime. The variation in lattice constant, reduced magnetization values, variation of magnetization with zinc substitution, the presence of a net magnetic moment for the zinc ferrite and the enhancement in Curie temperature in Mn1-xZnxFe2O4 all provide evidence to the existence of a metastable cation distribution together with possible surface effects at the nanoregime.
Resumo:
Superparamagnetic nanocomposites based on Y-Fe2O3 and sulphonated polystyrene were synthesised by ion-exchange process and the structural characterisation has been carried out using X-ray diffraction technique. Doping of cobalt in to the Y-Fe2O3 lattice was effected in situ and the doping was varied in the atomic percentage range 1–10. The optical absorption studies show a band gap of 2.84 eV, which is blue shifted by 0.64 eV when compared to the reported values for the bulk samples (2.2 eV). This is explained on the basis of weak quantum confinement. Further size reduction can result in a strong confinement, which can yield transparent magnetic nanocomposites because of further blue shifting. The band gap gets red shifted further with the addition of cobalt in the lattice and this red shift increases with the increase in doping. The observed red shift can be attributed to the strain in the lattice caused by the anisotropy induced by the addition of cobalt. Thus, tuning of bandgap and blue shifting is aided by weak exciton confinement and further red shifting of the bandgap is assisted by cobalt doping.
Resumo:
Frames are the most widely used structural system for multistorey buildings. A building frame is a three dimensional discrete structure consisting of a number of high rise bays in two directions at right angles to each other in the vertical plane. Multistorey frames are a three dimensional lattice structure which are statically indeterminate. Frames sustain gravity loads and resist lateral forces acting on it. India lies at the north westem end of the Indo-Australian tectonic plate and is identified as an active tectonic area. Under horizontal shaking of the ground, horizontal inertial forces are generated at the floor levels of a multistorey frame. These lateral inertia forces are transferred by the floor slab to the beams, subsequently to the columns and finally to the soil through the foundation system. There are many parameters that affect the response of a structure to ground excitations such as, shape, size and geometry of the structure, type of foundation, soil characteristics etc. The Soil Structure Interaction (SS1) effects refer to the influence of the supporting soil medium on the behavior of the structure when it is subjected to different types of loads. Interaction between the structure and its supporting foundation and soil, which is a complete system, has been modeled with finite elements. Numerical investigations have been carried out on a four bay, twelve storeyed regular multistorey frame considering depth of fixity at ground level, at characteristic depth of pile and at full depth. Soil structure interaction effects have been studied by considering two models for soil viz., discrete and continuum. Linear static analysis has been conducted to study the interaction effects under static load. Free vibration analysis and further shock spectrum analysis has been conducted to study the interaction effects under time dependent loads. The study has been extended to four types of soil viz., laterite, sand, alluvium and layered.The structural responses evaluated in the finite element analysis are bending moment, shear force and axial force for columns, and bending moment and shear force for beams. These responses increase with increase in the founding depth; however these responses show minimal increase beyond the characteristic length of pile. When the soil structure interaction effects are incorporated in the analysis, the aforesaid responses of the frame increases upto the characteristic depth and decreases when the frame has been analysed for the full depth. It has been observed that shock spectrum analysis gives wide variation of responses in the frame compared to linear elastic analysis. Both increase and decrease in responses have been observed in the interior storeys. The good congruence shown by the two finite element models viz., discrete and continuum in linear static analysis has been absent in shock spectrum analysis.
Resumo:
Department of Mathematics, Cochin University of Science and Technology.
Resumo:
The thesis deals with certain quantum field systems exhibiting spontaneous symmetry breaking and their response to temperature. These models find application in diverse branches such as particle physics, solid state physics and non~linear optics. The nature of phase transition that these systems may undergo is also investigated. The thesis contains seven chapters. The first chapter is introductory and gives a brief account of the various phenomena associated with spontaneous symmetry breaking. The chapter closes with anote on the effect of temperature on quantum field systems. In chapter 2, the spontaneous symmetry breaking phenomena are reviewed in more detail. Chapter 3, deals with the formulation of ordinary and generalised sine-Gordon field theories on a lattice and the study of the nature of phase transition occurring in these systems. In chapter 4, the effect of temperature on these models is studied, using the effective potential method. Chapter 5 is a continuation of this study for another model, viz, the m6 model. The nature of phase transition is also studied. Chapters 5 and 6 constitute a report of the investigations on the behaviour of coupling constants under thermal excitation D1 $4 theory, scalar electrodynamics, abelian and non-abelian gauge theories
Resumo:
There is a recent trend to describe physical phenomena without the use of infinitesimals or infinites. This has been accomplished replacing differential calculus by the finite difference theory. Discrete function theory was first introduced in l94l. This theory is concerned with a study of functions defined on a discrete set of points in the complex plane. The theory was extensively developed for functions defined on a Gaussian lattice. In 1972 a very suitable lattice H: {Ci qmxO,I qnyo), X0) 0, X3) 0, O < q < l, m, n 5 Z} was found and discrete analytic function theory was developed. Very recently some work has been done in discrete monodiffric function theory for functions defined on H. The theory of pseudoanalytic functions is a generalisation of the theory of analytic functions. When the generator becomes the identity, ie., (l, i) the theory of pseudoanalytic functions reduces to the theory of analytic functions. Theugh the theory of pseudoanalytic functions plays an important role in analysis, no discrete theory is available in literature. This thesis is an attempt in that direction. A discrete pseudoanalytic theory is derived for functions defined on H.
Resumo:
The physical properties of solid matter are basically influenced by the existence of lattice defects; as a result the study of crystal defects has assumed a central position in solid state physics and materials science. The study of dislocations ixa single crystals can yield a great deal of information on the mechanical properties of materials. In order to secure a full understanding of the processes taking place in semiconducting materials, it is important to investigate the microhardness of these materials-—the most reliable method of determining the fine structure of crystals, the revelation of micro—inhomogenities in the distribution of impurities, the effect of dislocation density on the mechanical properties of crystals etc. Basically electrical conductivity in single crystals is a defect controlled phenomenon and hence detailed investigation of the electrical properties of these materials is one of the best available methods for the study of defects in them. In the present thesis a series of detailed studies carried out in Te—Se system, Bi2Te3 and In2Te3 crystals using surface topographical, dislocation and microindentation analysis as well as electrical measurements are presented
Resumo:
The thesis is divided into nine chapters including introduction. Mainly we determine ultra L-topologies in the lattice of L- topologies and study their properties. We nd some sublattices in the lattice of L-topologies and study their properties. Also we study the lattice structure of the set of all L-closure operators on a set X.
Resumo:
A new semicarbazone, HL has been synthesized from quinoline-2-carboxaldehyde and N4-phenyl-3- semicarbazide and structurally and spectrochemically characterized. 1H NMR, 13C NMR, IR and electronic spectra of the compound are studied. The existence of keto form in the solid state is supported by the crystal structure and IR data. The compound crystallizes into an orthorhombic space group P212121. Intra and intermolecular hydrogen bonding interactions facilitates unit cell packing in the crystal lattice
Resumo:
The focus of this paper is to develop computationally efficient mathematical morphology operators on hypergraphs. To this aim we consider lattice structures on hypergraphs on which we build morphological operators. We develop a pair of dual adjunctions between the vertex set and the hyperedge set of a hypergraph , by defining a vertex-hyperedge correspondence. This allows us to recover the classical notion of a dilation/erosion of a subset of vertices and to extend it to subhypergraphs of . This paper also studies the concept of morphological adjunction on hypergraphs for which both the input and the output are hypergraphs
Resumo:
The focus of this article is to develop computationally efficient mathematical morphology operators on hypergraphs. To this aim we consider lattice structures on hypergraphs on which we build morphological operators. We develop a pair of dual adjunctions between the vertex set and the hyper edge set of a hypergraph H, by defining a vertex-hyperedge correspondence. This allows us to recover the classical notion of a dilation/erosion of a subset of vertices and to extend it to subhypergraphs of H. Afterward, we propose several new openings, closings, granulometries and alternate sequential filters acting (i) on the subsets of the vertex and hyperedge set of H and (ii) on the subhypergraphs of a hypergraph
Resumo:
Superparamagnetic nanocomposites based on g-Fe2O3 and sulphonated polystyrene have been synthesized by ion exchange process and the preparation conditions were optimized. Samples were subjected to cycling to study the effect of cycling on the magnetic properties of these composites. The structural and magnetization studies have been carried out. Magnetization studies show the dependence of magnetization on the number of ion exchange cycles. Doping of cobalt at the range in to the g-Fe2O3 lattice was effected in situ and the doping was varied in the atomic percentage range 1–10. The exact amount of cobalt dopant as well as the iron content was estimated by Atomic Absorption Spectroscopy. The effect of cobalt in modifying the properties of the composites was then studied and the results indicate that the coercivity can be tuned by the amount of cobalt in the composites. The tuning of both the magnetization and the coercivity can be achieved by a combination of cycling of ion exchange and the incorporation of cobalt
Resumo:
The results of the investigation of the magnetic and structural properties of the alloy system Fe0.75–xSi0.25Sbx, where x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25 synthesized by mechanical alloying followed by heat treatment are described. The x-ray diffraction reveals that all samples crystallize in the DO3-type cubic phase structure. Substituting Fe by Sb led to a de-crease in the lattice constant and the unit cell volume. The magnetic properties are investigated by vibrating sample magnetometer and show that all the samples are ferromagnetically ordered at room temperature. The Curie temperature is found to decrease linearly from (850 ± 5) K for the parent alloy to (620 ± 5) K for the alloyith x = 0.25. The satura-tion magnetizations at room temperature and at 100 K are found to decrease with increasing the antimony concentration. The above results indicate that Sb dissolves in the cubic structure of this alloy system.
Resumo:
Ferrofluids belonging to the series NixFe1 xFe2O4 were synthesised by two different procedures—one by standard co-precipitation techniques, the other by co-precipitation for synthesis of particles and dispersion aided by high-energy ball milling with a view to understand the effect of strain and size anisotropy on the magneto-optical properties of ferrofluids. The birefringence measurements were carried out using a standard ellipsometer. The birefringence signal obtained for chemically synthesised samples was satisfactorily fitted to the standard second Langevin function. The ball-milled ferrofluids showed a deviation and their birefringence was enhanced by an order. This large enhancement in the birefringence value cannot be attributed to the increase in grain size of the samples, considering that the grain sizes of sample synthesised by both modes are comparable; instead, it can be attributed to the lattice strain-induced shape anisotropy(oblation) arising from the high-energy ball-milling process. Thus magnetic-optical (MO) signals can be tuned by ball-milling process, which can find potential applications
Resumo:
The magnetic properties of Mn-doped ZnO (ZnO:Mn) nanorods grown by hydrothermal process at a temperature of 200 8C and a growth time of 3 h have been studied. The samples were characterized by using powder X-ray diffraction with Rietveld refinement, scanning electron microscopy, energy-dispersive X-ray analysis and SQUID magnetometry. Mn (3 wt%) and (5 wt%)-doped ZnO samples exhibit paramagnetic and ferromagnetic behavior, respectively, at room temperature. The spin-glass behavior is observed from the samples with respect to the decrease of temperature. At 10 K, both samples exhibit a hysteresis loop with relatively low coercivity. The room-temperature ferromagnetism in 5 wt% Mn-doped ZnO nanorods is attributed to the increase in the specific area of grain boundaries, interaction between dopant Mn2þ ions substituted at Zn2þ site and the interaction between Mn2þ ions and Zn2þ ions from the ZnO host lattice