19 resultados para irradiance caching
Resumo:
Time and space resolved spectroscopic studies of the molecular band emission from C2 are performed in the plasma produced by irradiating a graphite target with 1:06 m radiation from a Q-switched Nd:YAG laser. High-resolution spectra are recorded from points located at distances up to 15 mm from the target in the presence of ambient helium gas pressure. Depending on the laser irradiance, time of observation and position of the sampled volume of the plasma the features of the emission spectrum are found to change drastically. The vibrational temperature and population distribution in the different vibrational levels of C2 molecules have been evaluated as a function of distance for different time delays and laser irradiance. It is also found that the vibrational temperature of C2 molecules decreases with increasing helium pressure.
Resumo:
Plasma generated by fundamental radiation from a Nd:YAG laser focused onto a graphite target is studied spectroscopically. Measured line profiles of several ionic species were used to infer electron temperature and density at several sections located in front of the target surface. Line intensities of successive ionization states of carbon were used for electron temperature calculations. Stark broadened profiles of singly ionized species have been utilized for electron density measurements. Electron density as well as electron temperature were studied as functions of laser irradiance and time elapsed after the incidence of laser pulse. The validity of the assumption of local thermodynamic equilibrium is discussed in light of the results obtained.
Resumo:
In this paper we investigate the problem of cache resolution in a mobile peer to peer ad hoc network. In our vision cache resolution should satisfy the following requirements: (i) it should result in low message overhead and (ii) the information should be retrieved with minimum delay. In this paper, we show that these goals can be achieved by splitting the one hop neighbours in to two sets based on the transmission range. The proposed approach reduces the number of messages flooded in to the network to find the requested data. This scheme is fully distributed and comes at very low cost in terms of cache overhead. The experimental results gives a promising result based on the metrics of studies.
Resumo:
Data caching is an attractive solution for reducing bandwidth demands and network latency in mobile ad hoc networks. Deploying caches in mobile nodes can reduce the overall traf c considerably. Cache hits eliminate the need to contact the data source frequently, which avoids additional network overhead. In this paper we propose a data discovery and cache management policy for cooperative caching, which reduces the power usage, caching overhead and delay by reducing the number of control messages flooded into the network .A cache discovery process based on position cordinates of neighboring nodes is developed for this .The stimulstion results gives a promising result based on the metrics of the studies.