42 resultados para gluing technique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An open photoacoustic cell operating in the low range of chopping frequency has been employed to evaluate the thermal diffusivity values of intrinsic InP and InP doped with S, Sn and Fe. The experimental set-up is calibrated by the evaluation of thermal diffusivity value of pure Si and GaAs. The present investigation shows that doped samples show a reduced value for thermal diffusivity compared to intrinsic sample. From the analysis of data it is also seen that nature of dopant clearly influences the thermal diffusivity value of semiconductors. The results are explained in terms of phonon assisted heat transfer mechanism in semiconductors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An open photoacoustic cell operating in the low range of chopping frequency has been employed to evaluate the thermal diffusivity values of intrinsic InP and InP doped with S, Sn and Fe. The experimental set-up is calibrated by the evaluation of thermal diffusivity value of pure Si and GaAs. The present investigation shows that doped samples show a reduced value for thermal diffusivity compared to intrinsic sample. From the analysis of data it is also seen that nature of dopant clearly influences the thermal diffusivity value of semiconductors. The results are explained in terms of phonon assisted heat transfer mechanism in semiconductors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoplethysmography (PPG) is a simple and inexpensive optical technique that can be used to detect blood volume changes in the microvascular bed of tissues. There has been a resurgence of interest in the technique in recent years, driven by the demand for low cost, simple and portable technology for the primary care and community based clinical settings and the wide availability of low cost and small semiconductor components, and the advancement of computer-based pulse wave analysis techniques. The present research work deals with the design of a PPG sensor for recording the blood volume pulse signals and carry out selected cardiovascular studies based on these signals. The interaction of light with tissue, early and recent history of PPG, instrumentation, measurement protocol and pulse wave analysis are also discussed in this study. The effect of aging, mild cold exposure, and variation in the body posture on the PPG signal have been experimentally studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of global precipitation is of great importance in climate modeling since the release of latent heat associated with tropical convection is one of the pricipal driving mechanisms of atmospheric circulation.Knowledge of the larger-scale precipitation field also has important potential applications in the generation of initial conditions for numerical weather prediction models Knowledge of the relationship between rainfall intensity and kinetic energy, and its variations in time and space is important for erosion prediction. Vegetation on earth also greatly depends on the total amount of rainfall as well as the drop size distribution (DSD) in rainfall.While methods using visible,infrared, and microwave radiometer data have been shown to yield useful estimates of precipitation, validation of these products for the open ocean has been hampered by the limited amount of surface rainfall measurements available for accurate assessement, especially for the tropical oceans.Surface rain fall measurements(often called the ground truth)are carried out by rain gauges working on various principles like weighing type,tipping bucket,capacitive type and so on.The acoustic technique is yet another promising method of rain parameter measurement that has many advantages. The basic principle of acoustic method is that the droplets falling in water produce underwater sound with distinct features, using which the rainfall parameters can be computed. The acoustic technique can also be used for developing a low cost and accurate device for automatic measurement of rainfall rate and kinetic energy of rain.especially suitable for telemetry applications. This technique can also be utilized to develop a low cost Disdrometer that finds application in rainfall analysis as well as in calibration of nozzles and sprinklers. This thesis is divided into the following 7 chapters, which describes the methodology adopted, the results obtained and the conclusions arrived at.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoacoustic investigations carried out on different photonic materials are presented in this thesis. Photonic materials selected for the investigation are tape cast ceramics, muItilayer dielectric coatings, organic dye doped PVA films and PMMA matrix doped with dye mixtures. The studies are performed by the measurement of photoacoustic signal generated as a result of modulated cw laser irradiation of samples. The gas-microphone scheme is employed for the detection of photoacoustic signal. The different measurements reported here reveal the adaptability and utility of the PA technique for the characterization of photonic materials.Ceramics find applications in the field of microelectronics industry. Tape cast ceramics are the building blocks of many electronic components and certain ceramic tapes are used as thermal barriers. The thermal parameters of these tapes will not be the same as that of thin films of the same materials. Parameters are influenced by the presence of foreign bodies in the matrix and the sample preparation technique. Measurements are done on ceramic tapes of Zirconia, Zirconia-Alumina combination, barium titanate, barium tin titanate, silicon carbide, lead zirconate titanateil'Z'T) and lead magnesium niobate titanate(PMNPT). Various configurations viz. heat reflection geometry and heat transmission geometry of the photoacoustic technique have been used for the evaluation of different thermal parameters of the sample. Heat reflection geometry of the PA cell has been used for the evaluation of thermal effusivity and heat transmission geometry has been made use of in the evaluation of thermal diffusivity. From the thermal diffusivity and thermal effusivity values, thermal conductivity is also calculated. The calculated values are nearly the same as the values reported for pure materials. This shows the feasibility of photoacoustic technique for the thermal characterization of ceramic tapes.Organic dyes find applications as holographic recording medium and as active media for laser operations. Knowledge of the photochemical stability of the material is essential if it has to be used tor any of these applications. Mixing one dye with another can change the properties of the resulting system. Through careful mixing of the dyes in appropriate proportions and incorporating them in polymer matrices, media of required stability can be prepared. Investigations are carried out on Rhodamine 6GRhodamine B mixture doped PMMA samples. Addition of RhB in small amounts is found to stabilize Rh6G against photodegradation and addition of Rh6G into RhB increases the photosensitivity of the latter. The PA technique has been successfully employed for the monitoring of dye mixture doped PMMA sample. The same technique has been used for the monitoring of photodegradation ofa laser dye, cresyl violet doped polyvinyl alcohol also.Another important application of photoacoustic technique is in nondestructive evaluation of layered samples. Depth profiling capability of PA technique has been used for the non-destructive testing of multilayer dielectric films, which are highly reflecting in the wavelength range selected for investigations. Eventhough calculation of thickness of the film is not possible, number of layers present in the system can be found out using PA technique. The phase plot has clear step like discontinuities, the number of which coincides with the number of layers present in the multilayer stack. This shows the sensitivity of PA signal phase to boundaries in a layered structure. This aspect of PA signal can be utilized in non-destructive depth profiling of reflecting samples and for the identification of defects in layered structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subject of Photonics is concerned with the generation,control and utilization of photons for performing a variety of tasks.It came to existence as a consequence of the harmonious fusion of optical methods with electronic technology.Wide spread use of laser based methods in electronics is slowly replacing elecrtons with photons in the field of Communication,Control and Computing .Therefore,there is a need to promote the R & D activities in the area of Photonics and to generate well trained manpower in laser related fields.Development and characterization of photonic materials is an important subject of research in the field of Photonics.Optical and thermal characterization of photonic materials using thermal lens technique is a PhD thesis in the field of Photonics in which the author describes how thermal lens effect can be used to characterize themal and optical properties of photonic materials.Plausibility of thermal lens based logic gates is also presented in this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal lensing effect was studied in aqueous solutions of rhodamine B using 532 nm, 9 ns pulses from a Nd:YAG laser. A low intensity He-Ne laser beam was used for probing the thermal lens. Results obtained show that it is appropriate to use this technique for studying nonlinear absorption processes like two photon absorption or excited state absorption and for analyzing dimerization equilibria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dual-beam transient thermal lens studies were carried out in aqueous solutions of rhodamine 6G using 532 nm pulses from a frequency-doubled Nd:YAG laser. The analysis of the observed data showed that the thermal lens method can effectively be utilized to study the nonlinear absorption and aggregation which are taking place in a dye medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive method based on the principle of photothermal phenomena to study the energy transfer processes in organic dye mixtures is presented. A dual beam thermal lens method can be very effectively used as an alternate technique to determine the molecular distance between donor and acceptor in fluorescein–rhodamine B mixture using optical parametric oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of pH on the fluorescence efficiency of fluorescein is evaluated using thermal lens technique. Fluorescence efficiency increases as the sample becomes more and more alkaline. But when fluorescein is mixed with rhodamine B fluorescence quenching of fluorescein takes place with the excitation of rhodamine B. The electronic energy transfer in this mixture is investigated using Optical Parametric Oscillator as the excitation source. The effect of pH on the efficiency of energy transfer in fluorescein–rhodamine B mixture is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pulsed Nd-YAG laser beam is used to produce a transient refractive index gradient in air adjoining the plane surface of the sample material. This refractive index gradient is probed by a continuous He-Ne laser beam propagating parallel to the sample surface. The observed deflection signals produced by the probe beam exhibit drastic variations when the pump laser energy density crosses the damage threshold for the sample. The measurements are used to estimate the damage threshold for a few polymer samples. The present values are found to be in good agreement with those determined by other methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An open cell configuration has been employed for the photoacoustic measurement of the thermal diffusivity of undoped Bi2Se3 crystals and Bi2Se3 crystals doped with various concentrations of Te. The amplitude of the photoacoustic signal obtained under heat transmission configuration as a function of chopping frequency is used to evaluate the numerical value of thermal diffusivity, α. Doped samples show a substantial reduction in the value of α compared to undoped samples. The variations in the thermal diffusivity of the doped samples are explained in terms of the phonon assisted heat transfer mechanism. It is seen that α is very sensitive to structural variations arising from doping. The experimentally observed results are correlated with X-ray diffraction studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple method based on laser beam deflection to study the variation of diffusion coefficient with concentration in a solution is presented. When a properly fanned out laser beam is passed through a rectangular cell filled with solution having concentration gradient, the emergent beam traces out a curved pattern on a screen. By taking measurements on the pattern at different concentrations, the variation of diffusion coefficient with concentration can be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsed photoacoustic measurements have been carried out in toluene at 532 nm wavelength using a Q-switched frequency doubled Nd:YAG laser. The variation of photoacoustic signal amplitude with incident laser power indicates that at lower laser powers one photon absorption takes place at this wavelength while a clear two photon absorption occurs in this liquid at higher laser powers. The studies made here demonstrate that pulsed photoacoustic technique is simple and effective for the investigation of multiphoton processes in liquids.