45 resultados para electrochemical behaviour
Resumo:
The constructional activities in the coastal belt of our country often demand deep foundations because of the poor engineering properties and the related problems arising from weak soil at shallow depths.The soil profile in coastal area often consists of very loose sandy soils extending to a depth of 3 to 4 m from the ground level underlain by clayey soils of medium consistency.The very low shearing resistance of the foundation bed causes local as well as punching shear failure.Hence structures built on these soils may suffer from excessive settlements.This type of soil profile is very common in coastal areas of Kerala,especially in Cochin. Further,the high water table and limited depth of the top sandy layer in these areas restrict the depth of foundation thereby further reducing the safe bearing capacity.
Resumo:
Voltammetric sensors are an important class of electrochemical sensors in which the analytical information is obtained from the measurement of current obtained as a result of electrochemical oxidation/reduction.This current is proportional to the concentration of the analyte.Chemically modified electrodes(CMEs) have great significance as important analytical tools for the electrochemical determination of pharmaceuticals.The modification of electrode results in efficient determination of electro-active biomolecules at very lower potential without its major interferences.The operation mechanism of CMEs depends on the properties of the modifier materials that are used to promote selectivity towards the target analytes.Modified electrodes can be prepared by deposition of various compounds such as organic compounds ,conducting polymers,metal oxides,etc. on the various electrode surfaces.The thesis presents the development ,electrochemical characterization and analytical application studies of eight voltammetric sensors developed for six drugs viz.,Ambroxol,Sulfamethoxazole,PAM Chloride, Lamivudine,Metronidazole and Nimesulide.The modification techniques adopted as part of the present work include Multiwalled Carbon Nanotube(MWCNT) based modification.Electropolymerisation and Gold Nanoparticle (AuNP) based modifications.
Resumo:
We consider a resistively shunted Josephson junction with a resistance that depends inversely on voltage. It is shown that such a junction in the underdamped case can give rise to extremely long-lived metastable states even in the absence of external noise. We investigate numerically this metastable state and its transition to a chaotic state. The junction voltages corresponding to these states are studied.
Resumo:
We study the period-doubling bifurcations to chaos in a logistic map with a nonlinearly modulated parameter and show that the bifurcation structure is modified significantly. Using the renormalisation method due to Derrida et al. we establish the universal behaviour of the system at the onset of chaos.
Resumo:
Investigations on the fracture behaviour of polymer blends is the topic of this thesis. The blends selected are PP/HDPE and PS/HIPS. PP/HDPE blend is chosen due to its commercial importance and PS/HIPS blend is selected to study the transition from brittle fracture to ductile fracture.PP/HDPE blends were prepared at different compositions by melt blending at 180°C and fracture failure process was investigated by conducting notch sensitivity test and tensile test at different strain rates. The effects of two types of modifiers (particulate and elastomer) on the fracture behaviour and notch sensitivity of PP/HDPE blends were studied. The modifiers used are calcium carbonate, a hard particulate filler commonly used in plastics and Ethylene Propylene Diene Monomer (EPDM). They were added in 2%, 4% and 6% by weight of the blends.The study shows that the mechanical properties of PP/HDPE blends can be optimized by selecting proper blend compositions. The selected modifiers are found to alter and improve the fracture behaviour and notch sensitivity of the blends. Particulate fillers like calcium carbonate can be used for making the mechanical behaviour more stable at the various blend compositions. The resistance to notch sensitivity of the blends is found to be marginally lower in the presence of calcium carbonate. The elastomeric modifier EPDM produces a better stability of the mechanical behaviour. A low concentration of EPDM is sufficient to effect such a change. EPDM significantly improves the resistance to notch sensitivity of the blends. The study shows that judicious selection of modifiers can improve the fracture behaviour and notch sensitivity of PP/HDPE blends and help these materials to be used for critical applications.For investigating the transition in fracture behaviour and failure modes, PS/HIPS blends were selected. The blends were prepared by melt mixing followed by injection moulding to prepare the specimens for conducting tensile, impact and flexure tests. These tests were used to simulate the various conditions which promote failure.The tensile behaviour of unnotched and notched PS/HIPS blend samples were evaluated at slow speeds. Tensile strengths and moduli were found to increase at the higher testing speed for all the blend combinations whereas maximum strain at break was found to decrease. For a particular speed of testing, the tensile strength and modulus show only a very slight decrease as HIPS content is increased up to about 40%. However, there is a drastic decrease on increasing the HIPS content thereafter.The maximum strain at break shows only a very slight change up to about 40% HIPS content and thereafter shows a remarkable increase. The notched specimens also follow a comparable trend even though the notch sensitivity is seen high for PS rich blends containing up to 40% HIPS. The notch sensitivity marginally decreases with increase in HIPS content. At the same time, it is found to increase with the increase in strain rate. It is observed that blends containing more than 40% HIPS fail in ductile mode.The impact characteristics of PSIHIPS blends studied were impact strength, the energy absorbed by the test specimen and impact toughness. Remarkable increase in impact strength is observed as HIPS content in the blend exceeds 40%. The energy absorbed by the test specimens and the impact toughness also show a comparable trend.Flexural testing which helps to characterize the load bearing capacity was conducted on PS/HIPS blend samples at the two different testing speeds of 5mmlmin and 10 mm/min. The flexural strength increases with increase in testing speed for all the blend compositions. At both the speeds, remarkable reduction in flexural strength is observed as HIPS content in the blend exceeds 40%. The flexural strain and flexural energy absorbed by the specimens are found to increase with increase in HIPS content. At both the testing speeds, brittle fracture is observed for PS rich blends whereas HIPS rich blends show ductile mode of failure.Photoelastic investigations were conducted on PS/HIPS blend samples to analyze their failure modes. A plane polariscope with a broad source of light was utilized for the study. The coloured isochromatic fringes formed indicate the presence of residual stress concentration in the blend samples. The coverage made by the fringes on the test specimens varies with the blend composition and it shows a reducing trend with the increase in HIPS content. This indicates that the presence of residual stress is a contributing factor leading to brittle fracture in PS rich blends and this tendency gradually falls with increase in HIPS content and leads to their ductile mode of failure.
Resumo:
The primary aim of these investigations was to probe the elecnuchemical and material science aspects of some selected metal phthalocyanines(MPcs).Metal phthalocyanines are characterised by a unique planar molecular structure. As a single class of compounds they have been the subject of ever increasing number of physicochemical and technological investigations. During the last two decades the literature on these compounds was flooded by an outpour of original publications and patents. Almost every branch of materials science has benefited by their application-swface coating, printing, electrophotography, photoelectrochemistry, electronics and medicine to name a few.The present study was confined to the electrical and electrochemical properties of cobalt, nickel, zinc. iron and copper phthalocyanines. The use of soluble Pes as corrosion inhibitor for aluminium was also investigated.In the introductory section of the thesis, the work done so far on MPcs is reviewed. In this review emphasis is given to their general methods of synthesis and the physicochemical properties.In phthalocyanine chemistry one of the formidable tasks is the isolation of singular species. In the second chapter the methods of synthesis and purification are presented with necessary experimental details.The studies on plasma modified films of CoPe, FePc, ZnPc. NiPc and CuPc are also presented.Modification of electron transfer process by such films for reversible redox systems is taken as the criterion to establish enhanced electrocatalytic activity.Metal phthalocyanines are p- type semiconductors and the conductivity is enhanced by doping with iodine. The effect of doping on the activation energy of the conduction process is evaluated by measuring the temperature dependent variation of conductivity. Effect of thennal treatment on iodine doped CoPc is investigated by DSC,magnetic susceptibility, IR, ESR and electronic spectra. The elecnucatalytic activity of such doped materials was probed by cyclic voltammetry.The electron transfer mediation characteristics of MPc films depend on the film thickness. The influence of reducing the effective thickness of the MPc film by dispersing it into a conductive polymeric matrix was investigated. Tetrasulphonated cobalt phthalocyanine (CoTSP) was electrostatically immobilised into polyaniline and poly(o-toluidine) under varied conditions.The studies on corrosion inhibition of aluminium by CoTSP and CuTSP and By virtue of their anionic character they are soluble in water and are strongly adsorbed on aluminium. Hence they can act as corrosion inhibitors. CoTSP is also known to catalyze the reduction of dioxygen.This reaction can accelerate the anodic dissolution of metal as a complementary reaction. The influence of these conflicting properties of CoTSP on the corrosion of aluminium was studied and compared with those of CuTSP.In the course of these investigations a number of gadgets like cell for measuring the electrical conductivity of solids under non-isothermal conditions, low power rf oscillator and a rotating disc electrode were fabricated.
Resumo:
We discuss how the presence of frustration brings about irregular behaviour in a pendulum with nonlinear dissipation. Here frustration arises owing to particular choice of the dissipation. A preliminary numerical analysis is presented which indicates the transition to chaos at low frequencies of the driving force.
Resumo:
The scattering behaviour of fractal based metallodielectric structures loaded over metallic targets of different shapes such as flat plate, cylinder and dihedral corner reflector are investigated for both TE and TM polarizations of the incident wave. Out of the various fractal structures studied,square Sierpinski carpet structure is found to give backscattering reduction for an appreciable range of frequencies. The frequency of minimum backscattering depends on the geometry of the structure as well as on the thickness of the substrate. This structure when loaded over a dihedral corner reflector is showing an enhancement in RCS for corner angles other than 90◦.
Resumo:
The quality of a drug is determined after establishing its authenticity by testing its purity and quality of the pure substance in the drug and its formulations.Ion selective sensors have become one of the most effective and powerful means for analytical scientists in the determination of drug substances and are playing an increasing role in pharmaceutical analysis.ISEs are cost effective,easy to prepare and can be rapidly manipulated . Potentiometric ion selective sensors have been developed for six drugs namely trimethoprim, ketoconazole, lamivudine, domperidon, nimesulide and Lomefloxacin. The sensors fabricated include both PVC membrane sensor as well as carbon paste sensor. A total of sixteen different sensors have been developed. The response parameters of all the sensors have been studied and the sensors were applied to the determination of the drugs in pharmaceutical formulations and also in real samples like urine.
Resumo:
Potentiometric chemical sensors,an important class of electro-chemical sensors are widely used in pharmaceutical analysis because of its inherent advantages.The present study was aimed at fabrication of potentiometric sensors for the drugs mebendazole,pefloxacin,ambroxol,sildenafil citrate,dextro-methorphan and tetracycline.A total of 18 sensors have been developed for the determination of theses drugs.The major step in the fabrication of the sensor was the preparation of the ion association.Two types of sensors viz:PVC membrane sensor and carbon paste electode (CPE) were fabricated.The response characteristics of the different sensors fabricated were studied.Various response parameters studied include response time,selectivity and the effect of pH.The developed sensors were also employed for the determination of the drugs in pharmaceutical formulations and also for the recovery of the drug from urine samples.The selectivity studies reveal that the developed sensors are highly selective to the drug even in prescence of foreign ions.
Resumo:
The development of electrochemical sensors is currently one of the active areas of research in analytical chemistry.Voltammetric sensors as an important class of electrochemical sensors are extensively used in pharmaceutical applications.In voltammetric analysis,many active compounds in dosage forms,in contrast to excipients,can be readily oxidised or reduced at the electrode surface by applying a potential.Chemically modified electrodes have great significance in the electrochemical determination of pharmaceuticals.The modification of electrode results in efficient determination of electroactive species at very lower potential without any major interferences.The present study involves the fabrication of 8 voltammetric sensors for the drugs Metronidazole Benzoate, Sulfamethoxazole, Acyclovir, Pam Chloride , Trimethoprim , Tamsulosin Hydrochloride and Ceftriaxone Sodium.Two sensors were developed for the drug tamsulosin hydrochloride while one sensor each was developed for the other drugs.
Resumo:
A brief account of the several methods used for the production of thin films is presented in this Chapter. The discussions stress on the important methods used for the fabrication of a-si:H thin films. This review' also reveals ‘that almost all the general methods, like vacuum evaporation, sputtering, glow discharge and even chemical methods are currently employed for the production of a-Si:H thin films. Each method has its own advantages and disadvantages. However, certain methods are generally preferred. Subsequently a detailed account of the method used here for the preparation of amorphous silicon thin films and their hydrogenation is presented. The metal chamber used for the electrical and dielectric measurements is also described. A brief mention is made-on the electrode structure, film area and film geometry.
Resumo:
With the increase in population, housing and construction of various facilities have been a problem with urbanization. Having exhausted all the trouble free hand, man is nowon the lookout for techniques to improve areas which were originally considered uninhabitable. Thus this study is based on the nature and engineering behavior of soft clays covering long stretches of coastal line and methods to improve their geotechnical properties .The main aim of the present investigation is to study in detail the physical and engineering behavior of the marine clays of Cochin. While it is well known that the marine clays have been posing numerous problems to foundation engineers all along, the relevant literature reveals that no systematic and comprehensive study has been attempted to date. The: knowledge gained through the study is suitably used to improve these properties with appropriate additives.
Resumo:
Concrete is a universal material in the construction industry. With natural resources like sand and aggregate, fast depleting, it is time to look for alternate materials to substitute these in the process of making concrete. There are instances like exposure to solar radiation, fire, furnaces, and nuclear reactor vessels, special applications like missile launching pads etc., where concrete is exposed to temperature variations In this research work, an attempt has been made to understand the behaviour of concrete when weathered laterite aggregate is used in both conventional and self compacting normal strength concrete. The study has been extended to understand the thermal behaviour of both types of laterised concretes and to check suitability as a fire protection material. A systematic study of laterised concrete considering parameters like source of laterite aggregate, grades of Ordinary Portland Cement (OPC) and types of supplementary cementitious materials (fly ash and GGBFS) has been carried out to arrive at a feasible combination of various ingredients in laterised concrete. A mix design methodology has been proposed for making normal strength laterised self compacting concrete based on trial mixes and the same has also been validated. The physical and mechanical properties of laterised concretes have been studied with respect to different variables like exposure temperature (200°C, 400°C and 600°C) and cooling environment (air cooled and water cooled). The behaviour of ferrocement elements with laterised self compacting concrete has also been studied by varying the cover to mesh reinforcement (10mm to 50mm at an interval of 10mm), exposure temperature and cooling environment.