22 resultados para dye-sensitized solar cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In general, linear- optic, thermo- optic and nonlinear- optical studies on CdSe QDs based nano uids and their special applications in solar cells and random lasers have been studied in this thesis. Photo acous- tic and thermal lens studies are the two characterization methods used for thermo- optic studies whereas Z- scan method is used for nonlinear- optical charecterization. In all these cases we have selected CdSe QDs based nano uid as potential photonic material and studied the e ect of metal NPs on its properties. Linear optical studies on these materials have been done using vari- ous characterization methods and photo induced studies is one of them. Thermal lens studies on these materials give information about heat transport properties of these materials and their suitability for applica- tions such as coolant and insulators. Photo acoustic studies shows the e ect of light on the absorption energy levels of the materials. We have also observed that these materials can be used as optical limiters in the eld of nonlinear optics. Special applications of these materials have been studied in the eld of solar cell such as QDSSCs, where CdSe QDs act as the sensitizing materials for light harvesting. Random lasers have many applications in the eld of laser technology, in which CdSe QDs act as scattering media for the gain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper doped methylene blue sensitized poly(vinyl alcohol) (MBPVA)–acrylamide films were fabricated to improve the storage life of recorded gratings. The films were fabricated using gravity settling method and the copper chloride concentration was optimized as 3:18 10 3 mol/l for a dye concentration of 6:2 10 4 mol/l. The gratings recorded on the optimized film constitution could be stored for months with stable diffraction efficiency (24%) without any chemical or thermal fixing techniques. The resolution of the material is found to be unaffected with the addition of copper chloride.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper doped methylene blue sensitized poly(vinyl alcohol) (MBPVA)–acrylamide films were fabricated to improve the storage life of recorded gratings. The films were fabricated using gravity settling method and the copper chloride concentration was optimized as 3:18 10 3 mol/l for a dye concentration of 6:2 10 4 mol/l. The gratings recorded on the optimized film constitution could be stored for months with stable diffraction efficiency (24%) without any chemical or thermal fixing techniques. The resolution of the material is found to be unaffected with the addition of copper chloride.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper doped methylene blue sensitized poly(vinyl alcohol) (MBPVA)–acrylamide films were fabricated to improve the storage life of recorded gratings. The films were fabricated using gravity settling method and the copper chloride concentration was optimized as 3:18 10 3 mol/l for a dye concentration of 6:2 10 4 mol/l. The gratings recorded on the optimized film constitution could be stored for months with stable diffraction efficiency (24%) without any chemical or thermal fixing techniques. The resolution of the material is found to be unaffected with the addition of copper chloride.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin film solar cells having structure CuInS2/In2S3 were fabricated using chemical spray pyrolysis (CSP) technique over ITO coated glass. Top electrode was silver film (area 0.05 cm2). Cu/In ratio and S/Cu in the precursor solution for CuInS2 were fixed as 1.2 and 5 respectively. In/S ratio in the precursor solution for In2S3 was fixed as 1.2/8. An efficiency of 0.6% (fill factor -37.6%) was obtained. Cu diffusion to the In2S3 layer, which deteriorates junction properties, is inevitable in CuInS2/In2S3 cell. So to decrease this effect and to ensure a Cu-free In2S3 layer at the top of the cell, Cu/In ratio was reduced to 1. Then a remarkable increase in short circuit current density was occurred from 3 mA/cm2 to 14.8 mA/cm2 and an efficiency of 2.13% was achieved. Also when In/S ratio was altered to 1.2/12, the short circuit current density increased to 17.8 mA/cm2 with an improved fill factor of 32% and efficiency remaining as 2%. Thus Cu/In and In/S ratios in the precursor solutions play a crucial role in determining the cell parameters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Green energy and Green technology are the most of the quoted terms in the context of modern science and technology. Technology which is close to nature is the necessity of the modern world which is haunted by global warming and climatic alterations. Proper utilization of solar energy is one of the goals of Green Energy Movement. The present thesis deals with the work carried out in the eld of nanotechnology and its possible use in various applications (employing natural dyes) like solar cells. Unlike arti cial dyes, the natural dyes are available, easy to prepare, low in cost, non-toxic, environmentally friendly and fully biodegradable. Looking to the 21st century, the nano/micro sciences will be a chief contributor to scienti c and technological developments. As nanotechnology progresses and complex nanosystems are fabricated, a growing impetus is being given to the development of multi-functional and size-dependent materials. The control of the morphology, from the nano to the micrometer scales, associated with the incorporation of several functionalities can yield entirely new smart hybrid materials. They are special class of materials which provide a new method for the improvement of the environmental stability of the material with interesting optical properties and opening a land of opportunities for applications in the eld of photonics. Zinc oxide (ZnO) is one such multipurpose material that has been explored for applications in sensing, environmental monitoring, and bio-medical systems and communications technology. Understanding the growth mechanism and tailoring their morphology is essential for the use of ZnO crystals as nano/micro electromechanical systems and also as building blocks of other nanosystems.