34 resultados para bivalent metal ions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thiosemicarbazones have recently attracted considerable attention due to their ability to form tridentate chelates with transition metal ions through either two nitrogen and sulfur atoms, N–N–S or oxygen, nitrogen and sulfur atoms, O–N–S. Considerable interest in thiosemicarbazones and their transition metal complexes has also grown in the areas of biology and chemistry due to biological activities such as antitumoral, fungicidal, bactericidal, antiviral and nonlinear optical properties. They have been used for metal analyses, for device applications related to telecommunications, optical computing, storage and information processing.The versatile applications of metal complexes of thiosemicarbazones in various fields prompted us to synthesize the tridentate NNS-donor thiosemicarbazones and their metal complexes. As a part of our studies on transition metal complexes with these ligands, the researcher undertook the current work with the following objectives. 1. To synthesize and physico-chemically characterize the following thiosemicarbazone ligands: a. Di-2-pyridyl ketone-N(4)-methyl thiosemicarbazone (HDpyMeTsc) b. Di-2-pyridyl ketone-N(4)-ethyl thiosemicarbazone (HDpyETsc) 2. To synthesize oxovanadium(IV), manganese(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes using the synthesized thiosemicarbazones as principal ligands and some anionic coligands. 3. To study the coordination modes of the ligands in metal complexes by using different physicochemical methods like partial elemental analysis, thermogravimetry and by different spectroscopic techniques. 4. To establish the structure of compounds by single crystal XRD studies

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymer supports and polymeric complexes are highly versatile and they are successfully employed as efficient reagents, substrates and catalysts. Recently there observed a growing interest in the synthesis of tailor-made polymer supports and functionalized polymers for the preparation of metal complexes for various applications. They have the combination of properties due to the macromolecular structure as well as due to the reactivity of the functional group. An interesting feature of functional polymers is their affinity towards metal ions. Therefore the synthesis, characterization and application of such polymeric complexes have great scientific and analytical importance. In this investigation three series of polymeric complexes of transition metal ions are prepared from three schiff bases. All the complexes and polymeric schiff bases were characterized by analytical, spectral and thermal methods The thesis consist of six chapters. The first chapter contains an introduction and a brief review on application of polymer supports, polymer supported ligands and complexes. The second chapter gives the details of reagents and instruments used and the procedure adopted for the preparation of ligands and complexes. The third chapter explains the methods employed for characterization and the results are also discussed. The fourth chapter gives a detailed study of metal ion removal using ligands whereas the fifth chapter describes the development of the Cu” ion sensor electrode. The sixth chapter is the summary of the thesis and references are presented at the end.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis deals with the studies on the synthesis and characterisation of the complexes of embelin with manganese (II), cobalt(II), nickel (II), copper (II), zinc (II), cadmium (II), chromium (III), iron (III) lanthanum(III), praseodymium (III) neodymium (III) Samarium (III), gadolinium (III) dysprosium (III), yttrium (III) thorium (IV) and uranium (VI). Elemental analysis as well as spectral, thermal and magnetic data were used to ascertain the composition of the complexes and to establish the structures of the metal complexes. Wherever possible, the electronic spectra and magnetic data were used to predict the stereochemistry of the complexes.The thesis is divided into four chapters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work is focused on the organelle and biochemical responses to heavy metal exposure in the fish Oreochromis mossambicus giving particular importance to the metal detoxifying machinery of the organism. The thesis is an outcome of the effort aimed at developing practicable monitoring techniques to deliver guidelines for biological effect monitoring and the need for specific biochemical methods to detect biological effects of heavy metals that can be interpreted in terms of the health status of the individual organism and eventually alterations in vital processes as growth and reproduction. The efficiency of the metal detoxifying metallothioneins which is an attractive tool for biological monitoring, their role as scavengers of trace metal ions and thus in relieving the biological machinery from their toxicity effects are important themes of this study. Efforts have also been made to test the reliability of the spill over hypothesis of the action of metallothioneins (Winge et a1.,1973) and their use as a biological barometer of heavy metal stress.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aqua complex ions of metals must have existed since the appearance of water on the earth, and the subsequent appearance of life depended on, and may even have resulted from the interaction of metal ions with organic molecules. Studies on the coordinating ability of metal ions with other molecules and anions culminated in the theories of/\lfred Werner. Thereon the progress in the studies of metal complex chemistry was rapid. Many factors, like the utility and economic importance of metal chemistry, the intrinsic interest _in many of the compounds and the intellectual challenge of the structural problems to be solved, have contributed to this rapid progress. X—ray diffraction studies further accelerated the progress. The work cited in this thesis was carried out by the author in the Department of Applied Chemistry during 2001-2004. The primary aim of these investigations was to synthesise and characterize some transition metal complexes of 2-benzoylpyridine N(4)-substituted thiosemicarbazones and to study the antimicrobial activities of the ligands and their metal complexes. The work is divided into eight chapters

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Design and study of molecular receptors capable of mimicking natural processes has found applications in basic research as well as in the development of potentially useful technologies. Of the various receptors reported, the cyclophanes are known to encapsulate guest molecules in their cavity utilizing various non–covalent interactions resulting in significant changes in their optical properties. This unique property of the cyclophanes has been widely exploited for the development of selective and sensitive probes for a variety of guest molecules including complex biomolecules. Further, the incorporation of metal centres into these systems added new possibilities for designing receptors such as the metallocyclophanes and transition metal complexes, which can target a large variety of Lewis basic functional groups that act as selective synthetic receptors. The ligands that form complexes with the metal ions, and are capable of further binding to Lewis-basic substrates through open coordination sites present in various biomolecules are particularly important as biomolecular receptors. In this context, we synthesized a few anthracene and acridine based metal complexes and novel metallocyclophanes and have investigated their photophysical and biomolecular recognition properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The work embodied in this thesis was carried out by the author in the Department of Applied Chemistry, CUSAT, Kochi, during the period 2009-2012. The thesis is an introduction to our attempts to evaluate the coordination behavior of some compounds of our interest. The biological activities of semicarbazones and their metal complexes have been an active area of research during the past years because of their significant role in naturally occurring biological systems. Tridentate NNO and ONO semicarbazone systems formed from heterocyclic and aromatic carbonyl compounds and their transition metal complexes are wellauthenticated compounds in this field and their synthesis, crystal structures and spectral studies are well desirable. Hence, we decided to develop a research program aimed at the syntheses, crystal structures and spectral studies of new N4- phenylsemicarbazones derived from 2-formylpyridine and 3-ethoxysalicylaldehyde and their transition metal complexes and new transition metal complexes of 2- benzoylpyridine-N4-phenylsemicarbazone. In addition to various physicochemical methods of analysis, single crystal X-ray diffraction studies were also used for the characterization of the complexes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liquid Crystalline DNA is emerging as an active area of research, due to its potential applications in diverse fields, ranging from nanoelectronics to therapeutics. Since, counter ion neutralization is an essential requirement for the expression of LC DNA, and the present level of understanding on the LC phase behavior of high molecular weight DNA is inadequate, a thorough investigation is required to understand the nature and stability of these phases under the influence of various cationic species. The present study is, therefore mainly focused on a comparative investigation of the effect of metal ions of varying charge, size, hydration and binding modes on the LC phase behavior of high molecular weight DNA. The main objectives of the works are investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkali metal ions, investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkaline earth metal ions, effects of multivalent, transition and heavy metal ions on the LC phase behavior of high molecular weight DNA and investigations on spermine induced LC behavior of high molecular weight DNA in the presence of alkali and alkaline earth metal ions. The critical DNA concentration (CD) required for the expression of LC phases, phase transitions and their stability varied considerably when the binding site of the metal ions changed from phosphate groups to the nitrogenous bases of DNA, with Li+ giving the highest stability. Multiple LC phases with different textures, sometimes diffused and unstable or otherwise mainly distinct and clear, were observed on mixing metal ions with DNA solutions, which in turn depended on the charge, size, hydration factor, binding modes, concentration of the metal ions and time. Molecular modeling studies on binding of selected metal ions to DNA supported the experimental findings

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Co(II), Ni(II) and Cu(II) complexes of dimethylglyoxime and N,N-ethylenebis(7-methylsalicylideneamine) have been synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. The hybrid materials obtained have been characterized by elemental analysis, SEM, XRD, surface area, pore volume, magnetic moment, FTIR, UV-Vis and EPR techniques. Analysis of data indicates the formation of complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activities for hydrogen peroxide decomposition and oxidation of benzyl alcohol and ethylbenzene of zeolite complexes are reported. Zeolite Cu(II) complexes were found to be more active than the corresponding Co(II) and Ni(II) complexes for oxidation reactions. The catalytic properties of the complexes are influenced by their geometry and by the steric environment of the active sites. Zeolite complexes are stable enough to be reused and are suitable to be utilized as partial oxidation catalysts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of nonelectrolytic lanthanide(III) complexes, [ ML 2 Cl 3 ] · 2 H 2 O, where M is lanthanum(III), praseodymium(III), neodymium(III), samarium(III), gadolinium(III), terbium(III), dysprosium(III), and yttrium(III), containing sulfamethoxazole ligand (L) are prepared. The structure and bonding of the ligand are studied by elemental analysis, magnetic susceptibility measurements, IR, 1 H NMR, TG / DTA , X-ray diffraction studies, and electronic spectra of the complexes. The stereochemistry around the metal ions is a monocapped trigonal prism in which four of the coordination sites are occupied by two each from two chelating ligands, sulfonyl oxygen, and nitrogen of the amide group and the remaining three positions are occupied by three chlorines. The ligand and the new complexes were tested in vitro to evaluate their activity against the bacteria Escherichia coli and Staphylococcus aureus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Xylanases with hydrolytic activity on xylan, one of the hemicellulosic materials present in plant cell walls, have been identified long back and the applicability of this enzyme is constantly growing. All these applications especially the pulp and paper industries require novel enzymes. There has been lot of documentation on microbial xylanases, however, none meeting all the required characteristics. The characters being sought are: higher production, higher pH and temperature optima, good stabilities under these conditions and finally the low associated cellulase and protease production. The present study analyses various facets of xylanase biotechnology giving emphasis on bacterial xylanases. Fungal xylanases are having problems like low pH values for both enzyme activity and growth. Moreover, the associated production of cellulases at significant levels make fungal xylanases less suitable for application in paper and pulp industries.Bacillus SSP-34 selected from 200 isolates was clearly having xylan catabolizing nature distinct from earlier reports. The stabilities at higher temperatures and pH values along with the optimum conditions for pH and temperature is rendering Bacillus SSP-34 xylanase more suitable than many of the previous reports for application in pulp and paper industries.Bacillus SSP-34 is an alkalophilic thertmotolerant bacteria which under optimal cultural conditions as mentioned earlier, can produce 2.5 times more xylanase than the basal medium.The 0.5% xylan concentration in the medium was found to the best carbon source resulting in 366 IU/ml of xylanase activity. This induction was subjected to catabolite repression by glucose. Xylose was a good inducer for xylanase production. The combination of yeast extract and peptone selected from several nitrogen sources resulted in the highest enzyme production (379+-0.2 IU/ml) at the optimum final concentration of 0.5%. All the cultural and nutritional parameters were compiled and comparative study showed that the modified medium resulted in xylanase activity of 506 IU/ml, 5 folds higher than the basal medium.The novel combination of purification techniques like ultrafiltraton, ammonium sulphate fractionation, DEAE Sepharose anion exchange chromatography, CM Sephadex cation exchange chromatography and Gel permeation chromatography resulted in the purified xylanase having a specific activity of 1723 U/mg protein with 33.3% yield. The enzyme was having a molecular weight of 20-22 kDa. The Km of the purified xylanase was 6.5 mg of oat spelts xylan per ml and Vmax 1233 µ mol/min/mg protein.Bacillus SSP-34 xylanase resulted in the ISO brightness increase from 41.1% to 48.5%. The hydrolytic nature of the xylanase was in the endo-form.Thus the organism Bacillus SSP-34 was having interesting biotechnological and physiological aspects. The SSP-34 xylanase having desired characters seems to be suited for application in paper and pulp industries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dept.of Applied Chemistry,Cochin University of Science and Technolgy

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ion-exchange chromatography has emerged as a practical and rapid method of separation and analysis. A review of literature on chelating resins reveals that eventhough investigations on highly selective resins are intensively pursued from early 1940s, such resins are still insufficiently used in analytical chemistry and process technology. This is mainly due to the complexity of their synthesis and high cost. In this context, it is worthwhile to develop novel chelating resins which are specific or at least selective towards a group of metal ions. Synthesis, characterization and analytical applications of two such resins are presented in this thesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cobalt nanotubes (CoNTs) with very high longitudinal coercivity were prepared by electrodeposition of cobalt acetate for the first time by using anodized alumina (AAO) template. They were then characterized with X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), and a transmission electron microscope (TEM). Formation of a highly ordered hexagonal cobalt phase is observed. Room temperature SQUID (superconducting quantum interference device) magnetometer measurements indicate that the easy axis of magnetization is parallel to the nanotube axis. These CoNTs exhibit very high longitudinal coercivity of ∼820 Oe. A very high intertubular interaction resulting from magnetostatic dipolar interaction between nanotubes is observed. Thick-walled nanotubes were also fabricated by using cobalt acetate tetrahydrate precursors. A plausible mechanism for the formation of CoNTs based on mobility assisted growth is proposed. The role of the hydration layer and the mobility of metal ions are elucidated in the case of the growth mechanism of one-dimensional geometry

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.