25 resultados para Zinc diet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis contains the author's work in preparing efficient EL phosphors, the details of fabrication of low voltage operated thin film EL (TFEL) devices and DC TFEL devices. Some of the important work presented here are related to the white light emitting ZnS:Cu,Pr,Cl phosphor which can be colour tuned by changing the excitation frequency, observation of energy transfer from Cu/Ag ions to rare earth ions in ZnS:(Cu/Ag), RE,Cl phosphors, development of TFEL device which can be operated below 50V, optimization of the device parameters for long life, high brightness in terms of the active and insulating layer thicknesses, observation of dependence of threshold voltage for the onset of emission on frequency of excitation when a novel dielectric Eu2O3 film was used as insulator and the devices with multicolor emission using ZnS doped with rare earth as active layer. Characterization based on other devices based on ZnS:Sm, ZnS:Pr, ZnS:Dy and their emission characteristics are also illustrated

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research investigations on pollution, particularly in coastal/ estuarine environments are recent ones and started only in 1970s. Hence the informations available are fragmentary and scattered. They throw some light only on either the concentration of heavy metals in water or in sediment or in organisms. No concerted efforts have been made to consolidate and correlate the results between the environment and biota. Literature on the level of concentration of heavy metals in different tissues of organisms with regard to their availability in the living media, their ratio, their inter—relationship, tolerance limit of organisms, etc. are very few or rather nil. in view of the importance enumerated above, the candidate has selected the topic "Effects of some heavy metals copper, zinc and lead on certain tissues of E E (Hamilton and Buchanan) in different environments" for detailed studies and to understand systematically (i) the source of effluents and wastes, (ii) the concentration of heavy metals copper, zinc and lead in water, in sediments and in tissues of the test animal, (iii) their effects, (iv) capacity of tolerance and accumulation in different tissues of the animal, and (V) the "Bioaccumulation Factor", etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of heavy metals has increased quickly since the industrial revolution. Heavy metals frequently form compounds that can be toxic, carcinogenic, or mutagenic, even in very small concentrations. The usual techniques of removing metals from wastewaters are in general expensive and have many restrictions. Alternative methods of metal removal and recovery based on biological materials have been measured. Among various agents, the use of microbes for the removal of metals from industrial and municipal wastewater has been proposed as a promising alternative to conventional heavy metal management strategies in past decades. Thus, the present study aims to isolate and characterize bacteria from soil, sediment, and waters of metal-contaminated industrial area to study the zinc resistance patterns and the zinc bioaccumulation potential of the selected microorganism. Zinc analysis of the samples revealed that concentrations varying from 39.832 m g/L to 310.24 m g/L in water, 12.81 m g/g to 407.53 m g/g in soil, and 81.06 m g/g to 829.54 m g/g in sediment are present. Bacterial zinc resistance study showed that tolerance to Zn was relatively low (<500 m g/ml). Ten bacterial genera were represented in soil and 11 from water, while only 5 bacterial genera were recorded from sediment samples. Bacillus, Pseudomonas , and Enterobacter were found in soil, sediment, and water samples. Highly zincresistant Bacillus sp. was selected for zinc removal experiment. Zinc removal studies revealed that at pH 5 about 40% reduction occurs; at pH 7, 25% occurs; and at pH 9, 50% occurs. Relatively an increased removal of Zinc was observed in the fi rst day of the experiment by Bacillus sp. The metal bioaccumulative potential of the selected isolates may have possible applications in the removal and recovery of zinc from industrial ef fluents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc ferrite belongs to the class of normal spinels where it is assumed to have a cation distribution of Zn2`(Fe3`)2(O2~)4, and it is purported to be showing zero net magnetisation. However, there have been recent reports suggesting that zinc ferrite exhibits anomaly in its magnetisation. Zinc ferrite samples have been prepared by two di¤erent routes and have been analysed using low energy ion scattering, Mo¬ ssbauer spectroscopy and magnetic measurements. The results indicate that zinc occupies octahedral sites, contrary to the earlier belief that zinc occupies only the tetrahedral sites in a normal spinel. The amount of zinc on the B site increases with decrease in particle size. The LEIS results together with the Mo¬ ssbauer results and the magnetic measurements lead to the conclusion that zinc occupies the B site and the magnetisation exhibited by ultraÞne particles of zinc is due to short range ordering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc aluminate nanoparticles with average particle size of 40 nm were synthesized using a sol–gel combustion method. X-ray diffractometry result was analysed by Rietveld refinement method to establish the phase purity of the material. Different stages of phase formation of the material during the synthesis were investigated using differential scanning calorimetry and differential thermogravimetric analysis. Particle size was determined with transmission electron microscopy and the optical bandgap of the nanoparticles was determined by absorption spectroscopy in the ultraviolet-visible range. Dielectric permittivity and a.c. conductivity of the material were measured for frequencies from 100 kHz to 8 MHz in the temperature range of 30–120◦C. The presence of Maxwell– Wagner type interfacial polarization was found to exist in the material and hopping of electron by means of quantum mechanical tunneling is attributed as the reason for the observed a.c. conductivity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rubber ferrite composites have the unique advantage of mouldability, which is not easily obtainable using ceramic magnetic materials. The incorporation of mixed ferrites in appropriate weight ratios into the rubber matrix not only modi es the dielectric properties of the composite but also imparts magnetic properties to it. Mixed ferrites belonging to the series of Mn(1 – x )Znx Fe2O4 have been synthesised with diVerent values of x in steps of 0·2, using conventional ceramic processing techniques. Rubber ferrite composites were prepared by the incorporation of these pre-characterised polycrystallineMn(1 – x )Znx Fe2O4 ceramics into a natural rubber matrix at diVerent loadings according to a speci c recipe. The processability of these elastomers was determined by investigating their cure characteristics. The magnetic properties of the ceramic llers as well as of the rubber ferrite composites were evaluated and the results were correlated. Studies of the magnetic properties of these rubber ferrite composites indicate that the magnetisation increases with loading of the ller without changing the coercive eld. The hardness of these composites shows a steady increase with the loading of the magnetic llers. The evaluation of hardness andmagnetic characteristics indicates that composites with optimummagnetisation and almost minimum stiVness can be achieved with a maximum loading of 120 phr of the ller at x=0·4. From the data on the magnetisation of the composites, a simple relationship connecting the magnetisation of the rubber ferrite composite and the ller was formulated. This can be used to synthesise rubber ferrite composites with predetermined magnetic properties

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature and frequency dependence of dielectric permittivity and dielectric loss of nanosized Mn1−xZnxFe2O4 (for x = 0, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The impact of zinc substitution on the dielectric properties of the mixed ferrite is elucidated. Strong dielectric dispersion and broad relaxation were exhibited by Mn1−xZnxFe2O4. The variation of dielectric relaxation time with temperature suggests the involvement of multiple relaxation processes. Cole–Cole plots were employed as an effective tool for studying the observed phenomenon. The activation energies were calculated from relaxation peaks and Cole–Cole plots and found to be consistent with each other and indicative of a polaron conduction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mn1−xZnxFe2O4 nanoparticles (x = 0 to 1) were synthesized by the wet chemical co-precipitation technique. X-ray diffraction and transmission electron microscopy and high resolution transmission electron microscopy were effectively utilized to investigate the different structural parameters. The ac conductivity of nanosized Mn1−xZnxFe2O4 were investigated as a function of frequency, temperature and composition. The frequency dependence of ac conductivity is analysed by the power law σ(ω)ac = Bωn which is typical for charge transport by hopping or tunnelling processes. The temperature dependence of frequency exponent n was investigated to understand the conduction mechanism in different compositions. The conduction mechanisms are mainly based on polaron hopping conduction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine magnetic particles (sizeffi100A ˚ ) belonging to the series ZnxFe1 xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes mellitus is a heterogeneous metabolic disorder characterized by hyperglycemia with disturbances in carbohydrate, protein and lipid metabolism resulting from defects in insulin secretion, insulin action or both. Currently there are 387 million people with diabetes worldwide and is expected to affect 592 million people by 2035. Insulin resistance in peripheral tissues and pancreatic beta cell dysfunction are the major challenges in the pathophysiology of diabetes. Diabetic secondary complications (like liver cirrhosis, retinopathy, microvascular and macrovascular complications) arise from persistent hyperglycemia and dyslipidemia can be disabling or even life threatening. Current medications are effective for control and management of hyperglycemia but undesirable effects, inefficiency against secondary complications and high cost are still serious issues in the present prognosis of this disorder. Hence the search for more effective and safer therapeutic agents of natural origin has been found to be highly demanding and attract attention in the present drug discovery research. The data available from Ayurveda on various medicinal plants for treatment of diabetes can efficiently yield potential new lead as antidiabetic agents. For wider acceptability and popularity of herbal remedies available in Ayurveda scientific validation by the elucidation of mechanism of action is very much essential. Modern biological techniques are available now to elucidate the biochemical basis of the effectiveness of these medicinal plants. Keeping this idea the research programme under this thesis has been planned to evaluate the molecular mechanism responsible for the antidiabetic property of Symplocos cochinchinensis, the main ingredient of Nishakathakadi Kashayam, a wellknown Ayurvedic antidiabetic preparation. A general introduction of diabetes, its pathophysiology, secondary complications and current treatment options, innovative solutions based on phytomedicine etc has been described in Chapter 1. The effect of Symplocos cochinchinensis (SC), on various in vitro biochemical targets relevant to diabetes is depicted in Chapter 2 including the preparation of plant extract. Since diabetes is a multifactorial disease, ethanolic extract of the bark of SC (SCE) and its fractions (hexane, dichloromethane, ethyl acetate and 90 % ethanol) were evaluated by in vitro methods against multiple targets such as control of postprandial hyperglycemia, insulin resistance, oxidative stress, pancreatic beta cell proliferation, inhibition of protein glycation, protein tyrosine phosphatase-1B (PTP-1B) and dipeptidyl peptidase-IV (DPPxxi IV). Among the extracts, SCE exhibited comparatively better activity like alpha glucosidase inhibition, insulin dependent glucose uptake (3 fold increase) in L6 myotubes, pancreatic beta cell regeneration in RIN-m5F and reduced triglyceride accumulation in 3T3-L1 cells, protection from hyperglycemia induced generation of reactive oxygen species in HepG2 cells with moderate antiglycation and PTP-1B inhibition. Chemical characterization by HPLC revealed the superiority of SCE over other extracts due to presence of bioactives (beta-sitosterol, phloretin 2’glucoside, oleanolic acid) in addition to minerals like magnesium, calcium, potassium, sodium, zinc and manganese. So SCE has been subjected to oral sucrose tolerance test (OGTT) to evaluate its antihyperglycemic property in mild diabetic and diabetic animal models. SCE showed significant antihyperglycemic activity in in vivo diabetic models. Chapter 3 highlights the beneficial effects of hydroethanol extract of Symplocos cochinchinensis (SCE) against hyperglycemia associated secondary complications in streptozotocin (60 mg/kg body weight) induced diabetic rat model. Proper sanction had been obtained for all the animal experiments from CSIR-CDRI institutional animal ethics committee. The experimental groups consist of normal control (NC), N + SCE 500 mg/kg bwd, diabetic control (DC), D + metformin 100 mg/kg bwd, D + SCE 250 and D + SCE 500. SCEs and metformin were administered daily for 21 days and sacrificed on day 22. Oral glucose tolerance test, plasma insulin, % HbA1c, urea, creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, total protein etc. were analysed. Aldose reductase (AR) activity in the eye lens was also checked. On day 21, DC rats showed significantly abnormal glucose response, HOMA-IR, % HbA1c, decreased activity of antioxidant enzymes and GSH, elevated AR activity, hepatic and renal oxidative stress markers compared to NC. DC rats also exhibited increased level of plasma urea and creatinine. Treatment with SCE protected from the deleterious alterations of biochemical parameters in a dose dependent manner including histopathological alterations in pancreas. SCE 500 exhibited significant glucose lowering effect and decreased HOMA-IR, % HbA1c, lens AR activity, and hepatic, renal oxidative stress and function markers compared to DC group. Considerable amount of liver and muscle glycogen was replenished by SCE treatment in diabetic animals. Although metformin showed better effect, the activity of SCE was very much comparable with this drug. xxii The possible molecular mechanism behind the protective property of S. cochinchinensis against the insulin resistance in peripheral tissue as well as dyslipidemia in in vivo high fructose saturated fat diet model is described in Chapter 4. Initially animal were fed a high fructose saturated fat (HFS) diet for a period of 8 weeks to develop insulin resistance and dyslipidemia. The normal diet control (ND), ND + SCE 500 mg/kg bwd, high fructose saturated fat diet control (HFS), HFS + metformin 100 mg/kg bwd, HFS + SCE 250 and HFS + SCE 500 were the experimental groups. SCEs and metformin were administered daily for the next 3 weeks and sacrificed at the end of 11th week. At the end of week 11, HFS rats showed significantly abnormal glucose and insulin tolerance, HOMA-IR, % HbA1c, adiponectin, lipid profile, liver glycolytic and gluconeogenic enzyme activities, liver and muscle triglyceride accumulation compared to ND. HFS rats also exhibited increased level of plasma inflammatory cytokines, upregulated mRNA level of gluconeogenic and lipogenic genes in liver. HFS exhibited the increased expression of GLUT-2 in liver and decreased expression of GLUT-4 in muscle and adipose. SCE treatment also preserved the architecture of pancreas, liver, and kidney tissues. Treatment with SCE reversed the alterations of biochemical parameters, improved insulin sensitivity by modifying gene expression in liver, muscle and adipose tissues. Overall results suggest that SC mediates the antidiabetic activity mainly via alpha glucosidase inhibition, improved insulin sensitivity, with antiglycation and antioxidant activities.