19 resultados para Uniaxial bianisotropic, Transverse transmission line method
Resumo:
With the increasing popularity of wireless network and its application, mobile ad-hoc networks (MANETS) emerged recently. MANET topology is highly dynamic in nature and nodes are highly mobile so that the rate of link failure is more in MANET. There is no central control over the nodes and the control is distributed among nodes and they can act as either router or source. MANTEs have been considered as isolated stand-alone network. Node can add or remove at any time and it is not infrastructure dependent. So at any time at any where the network can setup and a trouble free communication is possible. Due to more chances of link failures, collisions and transmission errors in MANET, the maintenance of network became costly. As per the study more frequent link failures became an important aspect of diminishing the performance of the network and also it is not predictable. The main objective of this paper is to study the route instability in AODV protocol and suggest a solution for improvement. This paper proposes a new approach to reduce the route failure by storing the alternate route in the intermediate nodes. In this algorithm intermediate nodes are also involved in the route discovery process. This reduces the route establishment overhead as well as the time to find the reroute when a link failure occurs.
Resumo:
On-line handwriting recognition has been a frontier area of research for the last few decades under the purview of pattern recognition. Word processing turns to be a vexing experience even if it is with the assistance of an alphanumeric keyboard in Indian languages. A natural solution for this problem is offered through online character recognition. There is abundant literature on the handwriting recognition of western, Chinese and Japanese scripts, but there are very few related to the recognition of Indic script such as Malayalam. This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using K-NN algorithm. It would help in recognizing Malayalam text entered using pen-like devices. A novel feature extraction method, a combination of time domain features and dynamic representation of writing direction along with its curvature is used for recognizing Malayalam characters. This writer independent system gives an excellent accuracy of 98.125% with recognition time of 15-30 milliseconds
Resumo:
This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using Kohonen network. It would help in recognizing Malayalam text entered using pen-like devices. It will be more natural and efficient way for users to enter text using a pen than keyboard and mouse. To identify the difference between similar characters in Malayalam a novel feature extraction method has been adopted-a combination of context bitmap and normalized (x, y) coordinates. The system reported an accuracy of 88.75% which is writer independent with a recognition time of 15-32 milliseconds
Resumo:
Reinforcement Learning (RL) refers to a class of learning algorithms in which learning system learns which action to take in different situations by using a scalar evaluation received from the environment on performing an action. RL has been successfully applied to many multi stage decision making problem (MDP) where in each stage the learning systems decides which action has to be taken. Economic Dispatch (ED) problem is an important scheduling problem in power systems, which decides the amount of generation to be allocated to each generating unit so that the total cost of generation is minimized without violating system constraints. In this paper we formulate economic dispatch problem as a multi stage decision making problem. In this paper, we also develop RL based algorithm to solve the ED problem. The performance of our algorithm is compared with other recent methods. The main advantage of our method is it can learn the schedule for all possible demands simultaneously.