20 resultados para Shallow
Resumo:
Hydrodynamic characteristics of an estuary resulting from interaction of tide and river runoff are important since problems regarding flood, salinity intrusion, water quality, ecosystem and sedimentation are ubiquitous. The present study focuses on such hydrodynamic aspects in the Cochin estuary. Most of the estuaries that come under the influence of Indian Summer Monsoon and for which the salinity is never in a steady state at any time of the year are generally shallow and convergent, i.e. the width decreases rapidly from mouth to head. In contrast, Cochin estuary is wider towards the upstream and has no typical river mouth, where the rivers are joining the estuary along the length of its channel .Adding to the complexity it has dual inlets and the tidal range is 1 m which is lower than other Indian estuaries along west coast. These typical physical features lead to its unique hydrodynamic characteristics. Therefore the thesis objectives are: I) to study the influence of river runoff on tidal propagation using observations and a numerical model ii) to study stratification and property distributions in Cochin estuary iii) to understand salinity distributions and flushing characteristics iv) to understand the influence of saltwater barrage on tides and salinity v) To evaluate several classification schemes for the estuary
Resumo:
A yearlong (September 2009–August 2010) study was undertaken to find out possible reasons for occasional occurrence of White Spot Syndrome Virus (WSSV) outbreak in the traditional prawn farms adjoining Cochin backwaters. Physicochemical and bacteriological parameters of water and sediment from feeder canal and four shrimp farms were monitored on a fortnightly basis. The physicochemical parameters showed variation during the two production cycles and between the farms studied. Dissolved oxygen (DO) content of water fromfeeder canal showed low oxygen levels (as low as 0.8mg/L) throughout the study period. There was no disease outbreak in the perennial ponds. Poor water exchange coupled with nutrient loading from adjacent houses resulted in phytoplankton bloom in shallow seasonal ponds which led to hypoxic conditions in early morning and supersaturation of DO in the afternoon besides considerably high alkaline pH. Ammonia levels were found to be very high in these ponds.WSSV outbreak was encountered twice during the study leading to mass mortalities in the seasonal ponds. The hypoxia and high ammonia content in water and abrupt fluctuations in temperature, salinity and pH might lead to considerable stress in the shrimps triggeringWSSV infection in these traditional ponds
Resumo:
The extensive backwaters of Kerala are the sites for a flourishing cottage industry - the coir industry. This enterprise almost exclusively located along the 590 km coastal belt of Kerala, provides direct employment to over half a million people in the state and produces nearly 90% of the total coir goods in the world. The shallow bays and lagoons of the 30 backwater systems of the state are traditional areas for the retting of coconut husk for the production of the coir fibre. The paper examines the environmental status of the retting grounds in Kerala, in relation to the biotic communities. The study revealed that retting activity has caused large scale organic pollution along with the mass destruction of the flora and fauna, converting sizeable sections of the backwaters into virtual cesspools of foul smelling stagnant waters. High values of hydrogen sulphide, ammonia, BOD5 associated with anoxic conditions and low community diversity of plankton, benthic fauna, fish, shell fish, wood boring and fouling organisms were the outstanding feature of the retting zones.
Resumo:
Cochin estuary is a shallow brackish water body situated on the south west coast of India. It is a tropical positive estuary extending between 90 40’ and 100 12’ N and 760 10’and 760 30’ E with its northern boundary at Azhikode and southern boundary at Thannermukkom bund.The abundance of benthic fauna in an ecosystem shows the close relationship to its environment and reflects the characteristics of an ecological niche. Seasonal and monthly variations in the distribution of macrobenthos in relation to sediment characteristics were conducted in Cochin estuary from 2009-10 periods. Oxidation-reduction potential showed reducing trends that affected the distribution and diversity of fauna. Seasonal variations in water quality and river discharge pattern affected the faunal composition in the different stations. Sewage mixing was the principal source of organic pollution in the Cochin estuary. The sediment pH was generally on the alkaline side ranging from 4.99 at St.9 and 8.33 at St.1.The Eh ranged from -11mV at St.3 to -625mV at St.2.The temperature varied from 260C to 320C in the estuary. The moisture content ranged from 1.63 to 12.155%, that of organic carbon from 0 09 at St. 6 to 4.29% at St.9 and that of organic matter from 0.16 to 7.39%. Seasonally, the average of Eh was highest during the monsoon (156.22 mV) and in the pre monsoon (140.94 mV). The average pH for the 9 study stations was 7.68 during monsoon period and 7.08 during post monsoon. Based on group wise seasonal analysis, the average mean abundance was maximum for polychaetes (43.47) followed by nematodes (33.62), crustaceans (21.62), molluscs (11.94) and Pisces (0.05) in the estuary. Monsoon season was most favourable for benthic faunal abundance followed by the post monsoon period in the study. The series of human interventions like dredging, discharge of industrial effluents, urbanisation and related aspects had a strong influence on the distribution, abundance of benthic macrofauna in the wetland.
Resumo:
The cumulative effects of global change, including climate change, increased population density and domestic waste disposal, effluent discharges from industrial processes, agriculture and aquaculture will likely continue and increases the process of eutrophication in estuarine environments. Eutrophication is one of the leading causes of degraded water quality, water column hypoxia/anoxia, harmful algal bloom (HAB) and loss of habitat and species diversity in the estuarine environment. The present study attempts to characterize the trophic condition of coastal estuary using a simple tool; trophic index (TRIX) based on a linear combination of the log of four state variables with supplementary index Efficiency Coefficient (Eff. Coeff.) as a discriminating tool. Numerically, the index TRIX is scaled from 0 to10, covering a wide range of trophic conditions from oligotrophic to eutrophic. Study area Kodungallur-Azhikode Estuary (KAE) was comparatively shallow in nature with average depth of 3.6±0.2 m. Dissolve oxygen regime in the water column was ranged from 4.7±1.3 mgL−1 in Station I to 5.9±1.4 mgL−1 in Station IV. The average nitrate-nitrogen (NO3-N) of KAE water was 470 mg m−3; values ranged from Av. 364.4 mg m−3 at Station II to Av. 626.6 mg m−3at Station VII. The mean ammonium-nitrogen (NH4 +-N) varied from 54.1 mg m−3 at Station VII to 101 mg m−3 at Station III. The average Chl-a for the seven stations of KAE was 6.42±3.91 mg m−3. Comparisons over different spatial and temporal scales in the KAE and study observed that, estuary experiencing high productivity by the influence of high degree of eutrophication; an annual average of 6.91 TRIX was noticed in the KAE and seasonal highest was observed during pre monsoon period (7.15) and lowest during post monsoon period (6.51). In the spatial scale station V showed high value 7.37 and comparatively low values in the station VI (6.93) and station VII (6.96) and which indicates eutrophication was predominant in land cover area with comparatively high water residence time. Eff. Coeff. values in the KAE ranges from −2.74 during monsoon period to the lowest of −1.98 in pre monsoon period. Present study revealed that trophic state of the estuary under severe stress and the restriction of autochthonous and allochthonous nutrient loading should be keystone in mitigate from eutrophication process