22 resultados para STATIONARY SPACETIMES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two distinct nitrifying bacterial consortia, namely an ammonia oxidizing non-penaeid culture (AMO NPCU-1) and an ammonia oxidizing penaeid culture (AMOPCU-1), have been mass produced in a nitrifying bacterial consortia production unit (NBCPU). The consortia, maintained at 4 C were activated and cultured in a 2 l fermentor initially. At this stage the net biomass (0.105 and 0.112 g/l), maximum specific growth rate (0.112 and 0.105/h) and yield coefficients (1.315 and 2.08) were calculated respectively, for AMONPCU-1 and AMOPCU-1 on attaining stationary growth phase. Subsequently on mass production in a 200 l NBCPU under optimized culture conditions, the total amounts of NH4 ?–N removed by AMONPCU-1 and AMOPCU-1 were 1.948 and 1.242 g/l within 160 and 270 days, respectively. Total alkalinity reduction of 11.7–14.4 and 7.5–9.1 g/l were observed which led to the consumption of 78 and 62 g Na2CO3. The yield coefficient and biomass of AMONPCU-1 were 0.67 and 125.3 g/l and those of AMOPCU-1 were 1.23 and 165 g/l. The higher yield coefficient and growth rate of AMOPCU-1 suggest better energy conversion efficiency and higher CO2 fixation potential. Both of the consortia were dominated by Nitrosomonas-like organisms. The consortia may find application in the establishment of nitrification within marine and brackish water culture systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In wireless sensor networks, the routing algorithms currently available assume that the sensor nodes are stationary. Therefore when mobility modulation is applied to the wireless sensor networks, most of the current routing algorithms suffer from performance degradation. The path breaks in mobile wireless networks are due to the movement of mobile nodes, node failure, channel fading and shadowing. It is desirable to deal with dynamic topology changes with optimal effort in terms of resource and channel utilization. As the nodes in wireless sensor medium make use of wireless broadcast to communicate, it is possible to make use of neighboring node information to recover from path failure. Cooperation among the neighboring nodes plays an important role in the context of routing among the mobile nodes. This paper proposes an enhancement to an existing protocol for accommodating node mobility through neighboring node information while keeping the utilization of resources to a minimum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the major applications of underwater acoustic sensor networks (UWASN) is ocean environment monitoring. Employing data mules is an energy efficient way of data collection from the underwater sensor nodes in such a network. A data mule node such as an autonomous underwater vehicle (AUV) periodically visits the stationary nodes to download data. By conserving the power required for data transmission over long distances to a remote data sink, this approach extends the network life time. In this paper we propose a new MAC protocol to support a single mobile data mule node to collect the data sensed by the sensor nodes in periodic runs through the network. In this approach, the nodes need to perform only short distance, single hop transmission to the data mule. The protocol design discussed in this paper is motivated to support such an application. The proposed protocol is a hybrid protocol, which employs a combination of schedule based access among the stationary nodes along with handshake based access to support mobile data mules. The new protocol, RMAC-M is developed as an extension to the energy efficient MAC protocol R-MAC by extending the slot time of R-MAC to include a contention part for a hand shake based data transfer. The mobile node makes use of a beacon to signal its presence to all the nearby nodes, which can then hand-shake with the mobile node for data transfer. Simulation results show that the new protocol provides efficient support for a mobile data mule node while preserving the advantages of R-MAC such as energy efficiency and fairness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In wireless sensor networks, the routing algorithms currently available assume that the sensor nodes are stationary. Therefore when mobility modulation is applied to the wireless sensor networks, most of the current routing algorithms suffer from performance degradation. The path breaks in mobile wireless networks are due to the movement of mobile nodes, node failure, channel fading and shadowing. It is desirable to deal with dynamic topology changes with optimal effort in terms of resource and channel utilization. As the nodes in wireless sensor medium make use of wireless broadcast to communicate, it is possible to make use of neighboring node information to recover from path failure. Cooperation among the neighboring nodes plays an important role in the context of routing among the mobile nodes. This paper proposes an enhancement to an existing protocol for accommodating node mobility through neighboring node information while keeping the utilization of resources to a minimum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Friction welding is a solid state joining process that produces coalescence in materials, using the heat developed between surfaces through a combination of mechanical induced rubbing motion and applied load. In rotary friction welding technique heat is generated by the conversion of mechanical energy into thermal energy at the interface of the work pieces during rotation under pressure. Traditionally friction welding is carried out on a dedicated machine because of its adaptability to mass production. In the present work, steps were made to modify a conventional lathe to rotary friction welding set up to obtain friction welding with different interface surface geometries at two different speeds and to carry out tensile characteristic studies. The surface geometries welded include flat-flat, flat-tapered, tapered-tapered, concave-convex and convex-convex. A comparison of maximum load, breaking load and percentage elongation of different welded geometries has been realized through this project. The maximum load and breaking load were found to be highest for weld formed between rotating flat and stationary tapered at 500RPM and the values were 19.219kN and 14.28 kN respectively. The percentage elongation was found to be highest for weld formed between rotating flat and stationary flat at 500RPM and the value was 21.4%. Hence from the studies it is cleared that process parameter like “interfacing surface geometries” of weld specimens have strong influence on tensile characteristics of friction welded joints

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Welding of high strength and low weight materials like Aluminium Alloys without any defects by conventional welding techniques is a major challenge in industries. Hence research on solid state welding techniques like Friction stir welding and Friction welding techniques have got much importance in joining of Aluminium alloys. However most of the industries are not changing conventional techniques as skilled workers are available on that area. Most common conventional welding techniques used for joining of Aluminium alloys are Gas welding and Arc welding. Friction welding is a solid-state welding process that generates heat through mechanical friction between a moving and a stationary component with the addition of a lateral force called “upset” to plast ically displace and fuse the materials. In this work, experimental study on tensile and micro structural characteristics of welded joints formed from conventional welding techniques and Rotary friction welding(suitable for weld specimens with circular cross section) has been carried out and the same were compared. The process parameters for arc welding used was 50-70 Amp reverse polarity DC and electrodes of 2.3mm diameter. In Gas welding, the parameters were oxy acetylene neural flame at 3200°C and 3mm electrodes . In the case of friction welding an axial pressure loading of 3Mpa with 5 MPa as upsetting pressure and 500 rpm were used to obtain good welded joints. Tensile characteristic studies of Arc welded joints and Gas welded joints showed 48% and 60 % variations respectively from the maximum load bearing characteristics of parent metal. In the case of friction welded joint, the variation was found to 46%. Micro structural evaluation of conventionally welded joints exhibited clear distinct zones of various weld regions. In the case of friction welded joint micro structural photographs showed comparable features both in parent metal and welded region. Thus the tensile characteristic study and microstructure evaluations proved that friction welded joints are good in both aspects compared to conventionally welded joints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Speech is the primary, most prominent and convenient means of communication in audible language. Through speech, people can express their thoughts, feelings or perceptions by the articulation of words. Human speech is a complex signal which is non stationary in nature. It consists of immensely rich information about the words spoken, accent, attitude of the speaker, expression, intention, sex, emotion as well as style. The main objective of Automatic Speech Recognition (ASR) is to identify whatever people speak by means of computer algorithms. This enables people to communicate with a computer in a natural spoken language. Automatic recognition of speech by machines has been one of the most exciting, significant and challenging areas of research in the field of signal processing over the past five to six decades. Despite the developments and intensive research done in this area, the performance of ASR is still lower than that of speech recognition by humans and is yet to achieve a completely reliable performance level. The main objective of this thesis is to develop an efficient speech recognition system for recognising speaker independent isolated words in Malayalam.