127 resultados para Rubber plants.
Resumo:
Natural rubber, styrene-butadiene rubber, and polybutadiene rubber were used to replace part of the butadieneacrylonitrile rubber in a 70/30 butadiene-acrylonitrile rubber/ poly(vinyl chloride) blend. Such replacement up to 15% of the total weight of the blend improved the mechanical properties, while decreasing the cost of the blend. Styrenebutadiene rubber could replace butadiene-acrylonitrile rubber up to 30% of the total weight of the blend without deterioration in the mechanical properties.
Resumo:
Filled compounds of natural rubber, isobutylene-isoprene rubber and styrene-butadiene rubber compounds were extruded through a laboratory extruder by varying the feeding rate at different temperatures and revolutions per minute. The extruded compounds were vulcanized up to their optimum cure times and the mechanical properties of the vulcanizates were determined. The properties suggest that there is a particular feeding rate in the starved fed region which results in maximum mechanical properties. The study shows that running the extruder at a slightly starved condition is an attractive means of improving the physical properties.
Resumo:
Amine Terminated Liquid Natural Rubber (ATNR) was used as a plasticiser in filled NR and NBR compounds replacing oil/DOP. The scorch time and cure time were found to be lowered when ATNR was used as the plasticiser. ATNR was found to improve the mechanical properties like tensile strength, tear strength and modulus of the vulcanizates . The ageing resistance of the vulcanizates containing ATNR was superior compared to the vulcanizates containing oil/DOP.
Resumo:
A carbon black filled 50/50 natural rubber (NR)/styrene-butadiene rubber (SBR) blend is vulcanized using several conventional curing systems designed by varying the amounts of sulphur and accelerator. The cure characteristics and the properties of the vulcanizates are compared. The quantity and quality of crosslinks in each case are evaluated by chemical probes to correlate them with the properties.
Resumo:
Scrap latex products contain rubber hydrocarbon of very high quality, that is only slightly crosslinked. A novel economic technique for converting such latex waste into a processible material is developed. This paper reports the effect of adding this latex reclaim to natural rubber. It is shown that latex reclaim can replace raw natural rubber up to about 50 wt.% without affecting mechanical properties.
Resumo:
Waste latex products are converted to a processabto material by a novel economical process developed in our laboratory , It contains rubber hydrocarbon of very high quality and Is lightly cross -linked. Styrene-butadlene rubber is mixed with latex reclaim In different proportions . The mechanical properties are found to be improved up to 60 percent replacement of styrene-butadlene rubber by latex reclaim . The curing of styrene-butadiene rubber Is found to be accelerated by the addition of latex reclaim. The processablllty study shows that the blends can be processed similar to SBRINR blends.
Resumo:
Diphenylamine was chemically attached to depolymerised natural rubber by photochemical reaction. The rubber-bound diphenylamine was characterised by TLC, HNMR, IR and TGA. The efficiency and permanence of the bound diphenylamine was compared with conventional amine type antioxidant in natural rubber vulcanizates. The rubber-bound diphenylamine was found to be less volatile and less extractable compared to the conventional antioxidant. The vulcanizates showed improved ageing resistance in comparison to vulcanizates containing conventional antioxidant . Also, the presence of liquid rubber-bound diphenylamine reduces the amount of plasticiser required for compounding.
Resumo:
Antioxidants were attached to hydroxy-terminated liquid natural rubber by modified Friedel-Crafts alkylation reaction using anhydrous zinc chloride as catalyst. The rubber bound antioxidants were found to be less volatile and less extractable compared to conventional antioxidants. The bound antioxidants were tried both in latex compounds and dry rubber compounds. The vulcanizates showed improved ageing resistance compared to vulcanizates based on conventional antioxidants.
Resumo:
Para-phenylenediamine (PD) was chemically attached to depolymerized natural rubber by a photochemical reaction . The rubber bound PD was characterized by TLC, 1H-NMR, IR, and TGA. The efficiency and permanence of the bound PD were compared with conventional antioxidants in NBR vulcanizates . The rubber bound PD was found to be less volatile and more resistant to water and oil extraction . The vulcanizates showed improved aging resistance in comparison to vulcanizates containing conventional antioxidants. The liquid rubber bound antioxidant reduces the amount of plasticizer required for compounding
Resumo:
Carboxy Terminated Liquid Natural Rubber (CTNR) was prepared by photochemical reaction using maleic anhydride and masticated natural rubber (NR). The use of CTNR as an adhesive in bonding rubber to rubber and rubber to metal was studied. The peel strengths and lap shear strengths of the adherends which were bonded using CTNR were determined. The effect of using a tri isocyanate with CTNR in rubber to metal bonding was also studied. It is found that CTNR can effectively be used in bonding rubber to rubber and rubber to mild steel.
Resumo:
ABSTRACT: The electrical conductivity of silicone rubber vulcanizates containing carbon blacks [e.g., acetylene black, lamp black, and ISAF (N-234) black] were investigated. The change in electrical conductivity with varying amounts of carbon blacks and the temperature dependence was measured. The mechanical properties like tensile strength, tear strength, elongation at break, hardness, etc., of the vulcanizates were determined. A comparative study of the electrical conductivity of the composites revealed that the electrical conductivity of the composites made with acetylene black was higher than that of the composites made of other blacks.
Resumo:
ABSTRACT: Nylon tire cord (1680/2) was dipped in different adhesives based on resorcinol formaldehyde resin and latex (RFL) and was bonded to natural rubber-based compounds. The resin-rubber ratio in the RFL adhesive was optimized. The variation of pull-through load was studied by varying the drying and curing temperature of the dipped nylon tire cord. RFL adhesive based on vinylpyridine latex was found to have better rubber-to-nylon tire cord bonding, compared with the one based on natural rubber latex. Addition of a formaldehyde donor into the RFL adhesive/rubber compound improves adhesion.
Resumo:
Rubber solutions were prepared and used for bonding wood pieces. The effect of the variation of chlorinated natural rubber (CNR) and phenolformaldehyde (PF) resin in the adhesive solutions on lap shear strength was determined. Natural rubber and neoprene-based adhesive solutions were compared for their lap shear strength. The storage stability of the adhesive prepared was determined. The change in lap shear strength before and after being placed in cold water, hot water, acid, and alkali was tested. The bonding character of these adhesives was compared with different commercially available solution adhesives. The room-temperature aging resistance of wood joints was also determined. In all the studies, the adhesive prepared in the laboratory was found to be superior compared to the commercial adhesives.
Resumo:
ABSTRACT: p-Phenylenediamine was chemically attached to low molecular weight chlorinated paraffin wax. The polymer-bound p-phenylenediamine was characterized by vapor-phase osmometry (VPO), proton magnetic resonance spectroscopy ('H-NMR), infrared spectroscopy (IR), and thermogravimetric analysis (TGA). The efficiency and permanence of the polymer-bound p-phenylenediamine as an antioxidant was compared with a conventional amine-type antioxidant in natural rubber vulcanizates. The vulcanizates showed improved aging resistance in comparison to vulcanizates containing a conventional antioxidant. The presence of liquid polymer-bound p-phenylenediamine also reduces the amount of the plasticizer required for compounding.
Resumo:
ABSTRACT: Phenol was chemically attached to low molecular weight chlorinated polyisobutylene and stearic acid respectively. These phenolic antioxidants were characterised by IR, 1H NMR and TGA. The efficiency and permanence of these bound antioxidants were compared with conventional antioxidants in natural rubber vulcanisates. The vulcanisates showed comparable ageing resistance in comparison to vulcanisates containing conventional antioxidants. The presence of liquid polymer bound phenol reduce the amount of plasticiser required for compounding.