28 resultados para Radar.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reduction of radar cross -section of dihedral corner reflectors using simulated corrugated surface (SCS) is reported. The technique is found to be more effective in the reduction of RCS or corner reflectors for normal incidence . A typical reduction of 40-50 dB is achieved using this method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electromagnetic tomography has been applied to problems in nondestructive evolution, ground-penetrating radar, synthetic aperture radar, target identification, electrical well logging, medical imaging etc. The problem of electromagnetic tomography involves the estimation of cross sectional distribution dielectric permittivity, conductivity etc based on measurement of the scattered fields. The inverse scattering problem of electromagnetic imaging is highly non linear and ill posed, and is liable to get trapped in local minima. The iterative solution techniques employed for computing the inverse scattering problem of electromagnetic imaging are highly computation intensive. Thus the solution to electromagnetic imaging problem is beset with convergence and computational issues. The attempt of this thesis is to develop methods suitable for improving the convergence and reduce the total computations for tomographic imaging of two dimensional dielectric cylinders illuminated by TM polarized waves, where the scattering problem is defmed using scalar equations. A multi resolution frequency hopping approach was proposed as opposed to the conventional frequency hopping approach employed to image large inhomogeneous scatterers. The strategy was tested on both synthetic and experimental data and gave results that were better localized and also accelerated the iterative procedure employed for the imaging. A Degree of Symmetry formulation was introduced to locate the scatterer in the investigation domain when the scatterer cross section was circular. The investigation domain could thus be reduced which reduced the degrees of freedom of the inverse scattering process. Thus the entire measured scattered data was available for the optimization of fewer numbers of pixels. This resulted in better and more robust reconstructions of the scatterer cross sectional profile. The Degree of Symmetry formulation could also be applied to the practical problem of limited angle tomography, as in the case of a buried pipeline, where the ill posedness is much larger. The formulation was also tested using experimental data generated from an experimental setup that was designed. The experimental results confirmed the practical applicability of the formulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of the thesis is to improve the state of knowledge and understanding of the physical structure of the TMCS and its short range prediction. The present study principally addresses the fine structure, dynamics and microphysics of severe convective storms.The structure and dynamics of the Tropical cloud clusters over Indian region is not well understood. The observational cases discussed in the thesis are limited to the temperature and humidity observations. We propose a mesoscale observational network along with all the available Doppler radars and other conventional and non—conventional observations. Simultaneous observations with DWR, VHF and UHF radars of the same cloud system will provide new insight into the dynamics and microphysics of the clouds. More cases have to be studied in detail to obtain climatology of the storm type passing over tropical Indian region. These observational data sets provide wide variety of information to be assimilated to the mesoscale data assimilation system and can be used to force CSRM.The gravity wave generation and stratosphere troposphere exchange (STE) processes associated with convection gained a great deal of attention to modem science and meteorologist. Round the clock observations using VHF and UHF radars along with supplementary data sets like DWR, satellite, GPS/Radiosondes, meteorological rockets and aircrafl observations is needed to explore the role of convection and associated energetics in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antennas are necessary and vital components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Reconfigurable antennas can adjust with changing system requirements or environmental conditions and provide additional levels of functionality that may result in wider instantaneous frequency bandwidths, more extensive scan volumes, and radiation patterns with more desirable side lobe distributions. Their agility and diversity created new horizons for different types of applications especially in cognitive radio, Multiple Input Multiple Output Systems, satellites and many other applications. Reconfigurable antennas satisfy the requirements for increased functionality, such as direction finding, beam steering, radar, control and command, within a confined volume. The intelligence associated with the reconfigurable antennas revolved around switching mechanisms utilized. In the present work, we have investigated frequency reconfigurable polarization diversity antennas using two methods: 1. By using low-loss, high-isolation switches such as PIN diode, the antenna can be structurally reconfigured to maintain the elements near their resonant dimensions for different frequency bands and/or polarization. 2. Secondly, the incorporation of variable capacitors or varactors, to overcome many problems faced in using switches and their biasing. The performances of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances. One of the major contributions of the thesis lies in the analysis of the designed antennas using FDTD based numerical computation to validate their performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flange technique, suggested by Reynolds72 is simple technique to improve antenna characteristics. Using flange technique we can trim the antenna characteristic by suitably adjusting the flange parameters75. Later corrugated flanges87 are used for beam shaping. The important parameters of the corrugated flanges are (a) flange angle, (b) flange width, (c) flange position, (d) conductivity of the flange, (e) amplitude excitation of the flange elements, (f) period of corrugation etc. Compared to a compound horn the flange technique offers great convenience in trimming antenna characteristics. Horns are commonly used as a feed in radar and satellite communications. A large number of work had been done to improve the characteristics of horn antennas. It is an established fact that grooved walls on the inner surface of a horn can improve the antenna characteristics44. Corrugated comb surface can be used for the circular polarization98, tilt of polarization99 etc. This suggests the possibility to combine these two phenomena and to obtain a resultant beam. This thesis presents the result of an investigation to study the possibility of controlling different antenna characteristics like polarization, beam shaping, matching etc, using corrugated flange techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antennas play an important role in determining the characteristics of any electronic system which depends on free space as the propagation medium. Basically, an antenna can be considered as the connecting link between free space and the transmitter or receiver. For radar and navigational purposes the directional properties of an antenna is its most basic requirement as it determines the distribution of radiated energy. Hence the study of directional properties of antennas has got special significance and several useful applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous low - pressure systems form in the Arabian Sea and Bay of Bengal. These low-pressure systems are highly useful in bringing the rainfall over the Indian sub continent. The developments of these systems are accompanied by the reduction in air temperature and an increase in atmospheric humidity. The radio refractivity, which is a function of the atmospheric pressure, temperature and humidity, also changes following the development of these systems. Variation of radio refractive index and its vertical gradient are analysed for many low pressure systems formed over the Arabian Sea and Bay of Bengal. It is found that the atmosphere becomes super refractive associated with the formation of these systems, caused by the increase in humidity and decrease in temperature. The maximum gradient is observed near the surface layers, especially in the lowest 1 km. Super refraction leads to increased radar detection range and extension of radio horizon

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characteristics of the monsoon boundary layer are imperative to understand in the perception of the tropical regions. The southwest monsoon is associated with a strong wind in the lower troposphere near 1.5 km and is referred to as Low Level Jet stream (LLJ). The boundary layer structure associated with the LLJ during monsoon can be studied using L-band Ultra High Frequency (UHF) radar. This L-band wind profiler-commonly referred as lower atmospheric wind profiler (LAWP), was installed at NARL, Gadanki. Zonal, meridional and vertical wind components are used to understand the diurnal variation of the wind in the Atmospheric Boundary Layer (ABL) and associated features. From the analysis during non rainy days of the southwest monsoon, it is found that the LLJ has maximum strength during the early morning hours at lower level and the height increases as day progresses. The vertical wind shows the transfer of momentum from the LLJ towards the surface, indicating the sinking motion during the daytime. Vertical gradient of the wind shear shows the intensity of clear air turbulence is moderate and no severe clear air turbulence is noticed during the monsoon period

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thunderstorm, resulting from vigorous convective activity, is one of the most spectacular weather phenomena in the atmosphere. A common feature of the weather during the pre-monsoon season over the Indo-Gangetic Plain and northeast India is the outburst of severe local convective storms, commonly known as ‘Nor’westers’(as they move from northwest to southeast). The severe thunderstorms associated with thunder, squall lines, lightning and hail cause extensive losses in agricultural, damage to structure and also loss of life. In this paper, sensitivity experiments have been conducted with the Non-hydrostatic Mesoscale Model (NMM) to test the impact of three microphysical schemes in capturing the severe thunderstorm event occurred over Kolkata on 15 May 2009. The results show that the WRF-NMM model with Ferrier microphysical scheme appears to reproduce the cloud and precipitation processes more realistically than other schemes. Also, we have made an attempt to diagnose four severe thunderstorms that occurred during pre-monsoon seasons of 2006, 2007 and 2008 through the simulated radar reflectivity fields from NMM model with Ferrier microphysics scheme and validated the model results with Kolkata Doppler Weather Radar (DWR) observations. Composite radar reflectivity simulated by WRF-NMM model clearly shows the severe thunderstorm movement as observed by DWR imageries, but failed to capture the intensity as in observations. The results of these analyses demonstrated the capability of high resolution WRF-NMM model in the simulation of severe thunderstorm events and determined that the 3 km model improve upon current abilities when it comes to simulating severe thunderstorms over east Indian region

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-lying coastal areas are more vulnerable to the impacts of climate change as they are highly prone for inundation to SLR (Sea-Level Rise). This study presents an appraisal of the impacts of SLR on the coastal natural resources and its dependent social communities in the low-lying area of VellareColeroon estuarine region of the Tamil Nadu coast, India. Digital Elevation Model (DEM) derived from SRTM 90M (Shuttle Radar Topographic Mission) data, along with GIS (Geographic Information System) techniques are used to identify an area of inundation in the study site. The vulnerability of coastal areas in Vellar-Coleroon estuarine region of Tamil Nadu coast to inundation was calculated based on the projected SLR scenarios of 0.5 m and 1 m. The results demonstrated that about 1570 ha of the LULC (Land use and Land cover) of the study area would be permanently inundated to 0.5 m and 2407 ha for 1 m SLR and has also resulted in the loss of three major coastal natural resources like coastal agriculture, mangroves and aquaculture. It has been identified that six hamlets of the social communities who depend on these resources are at high-risk and vulnerable to 0.5 m SLR and 12 hamlets for 1 m SLR. From the study, it has been emphasized that mainstreaming adaptation options to SLR should be embedded within a coastal zone management and planning effort, which includes all coastal natural resources (ecosystem-based adaptation), and its dependent social communities (community-based adaptation) involved through capacity building

Relevância:

10.00% 10.00%

Publicador:

Resumo:

14th Biennial International Symposium on Antennas and propagation Department of Electronics, Cochin University of Science & Technology, Cochin 682022, INDIA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this thesis is to develop a compact chipless RFID tag with high data encoding capacity. The design and development of chipless RFID tag based on multiresonator and multiscatterer methods are presented first. An RFID tag using using SIR capable of 79bits is proposed. The thesis also deals with some of the properties of SIR like harmonic separation, independent control on resonant modes and the capability to change the electrical length. A chipless RFID reader working in a frequency band of 2.36GHz to 2.54GHz has been designed to show the feasibility of the RFID system. For a practical system, a new approach based on UWB Impulse Radar (UWB IR) technology is employed and the decoding methods from noisy backscattered signal are successfully demonstrated. The thesis also proposes a simple calibration procedure, which is able to decode the backscattered signal up to a distance of 80cm with 1mW output power.