27 resultados para Primary Electron Donor
Resumo:
The incorporation of transition metal oxide pillars such as those of iron and chromium along with Al2O3, pillars within the interlayers of a montmorillonite clay is investigated. The surface acidity of these catalysts has been evaluated for the first time employing the equilibrium adsorption of an electron donor, perylene, and the results are compared with those obtained by temperature programmed desorption of ammonia. The principle is based on the ability of a catalyst surface site to accept a single electron from an electron donor like perylene to form charge transfer complexes and the amount of adsorbed species is measured quantitatively by UV-vis spectroscopy. Fina1ly, an attempt has been made to correlate the acidity determined by the two independcnt methods and the catalytic activity of present systems in the benzoylation of toluene with benzoyl chloride. Incorporation of Fe and Cr has changed the properties of AI pitlared montmorillonite. Fe pillared systems have been found to be vcry good catalysts for benzoylation reaction
Resumo:
Preparation of simple and mixed ferrospinels of nickel, cobalt and copper and their sulphated analogues by the room temperature coprecipitation method yielded fine particles with high surface areas. Study of the vapour phase decomposition of cyclohexanol at 300 °C over all the ferrospinel systems showed very good conversions yielding cyclohexene by dehydration and/or cyclohexanone by dehydrogenation, as the major products. Sulphation very much enhanced the dehydration activity over all the samples. A good correlation was obtained between the dehydration activities of the simple ferrites and their weak plus medium strength acidities (usually of the Brφnsted type) determined independently by the n-butylamine adsorption and ammonia-TPD methods. Mixed ferrites containing copper showed a general decrease in acidities and a drastic decrease in dehydration activities. There was no general correlation between the basicity parameters obtained by electron donor studies and the ratio of dehydrogenation to dehydration activities. There was a leap in the dehydrogenation activities in the case of all the ferrospinel samples containing copper. Along with the basic properties, the redox properties of copper ion have been invoked to account for this added activity.
Resumo:
Ferrospinels of nickel, cobalt and copper and their sulphated analogues were prepared by the room temperature coprecipitation route to yield samples with high surface areas. The intrinsic acidity among the ferrites was found to decrease in the order: cobalt> nickel> copper. Sulphation caused an increase in the number of weak and medium strong acid sites, whereas the strong acid sites were left unaffected. Electron donor studies revealed that copper ferrite has both the highest proportion of strong sites and the lowest proportion of weak basic sites. All the ferrite samples proved to be good catalysts for the benzoy lation of toluene with benzoyl chloride. copper and cobalt ferrites being much more active than nickel ferrite. The catalytic activity for benzoylation was not much influenced by sulphation, but it increased remarkably with calcination temperature of the catalyst. Surface Lewis acid sites, provided by the octahedral cations on the spinel surface, are suggested to be responsible for the catalytic activity for the benzoylation reaction.
Resumo:
The catalytic activity of some of the ABO3 (A = La, Pr and Sm, B= Cr, Mn, Fe, Co and Ni) perovskite-type oxides for the liquid phase reduction of ketone and oxidation of alcohol in 2-propanol medium has been studied. The data have been correlated with the surface electron donor properties of these oxides. The surface electron donor properties have been determined from the adsorption of electron acceptors of varying electron affinities on the oxide surface.
Resumo:
Organic crystals possess extremely large optical nonlinearity compared to inorganic crystals. Also organic compounds have the amenability for synthesis and scope for introducing desirable characteristics by inclusions. A wide variety of organic materials having electron donor and acceptor groups, generate high order of nonlinearity. In the present work, a new nonlinear optical crystal, L-citrulline oxalate (LCO) based on the aminoacid L-citrulline was grown using slow evaporation technique. Structural characterization was carried out by single crystal XRD. It crystallizes in the noncentrosymmetric, orthorhombic structure with space group P21 P21 P21. Functional groups present in the sample were identified by Fourier transform infra red (FTIR) and FT-Raman spectral analysis. On studying the FTIR and Raman spectra of the precursors L-citrulline and oxalic acid, used for growing L-citrulline oxalate crystal, it is found that the significant peaks of the precursors are present in the spectra of the L-citrulline oxalate crystal . This observation along with the presence of NH3 + group in the spectra of L-citrulline oxalate, confirms the formation of the charge transfer complex
Resumo:
The primary aim of these investigations was to probe the spectroscopic, electrochemical, biological and single crystal X-ray diffraction studies of some selected transition metal complexes of 4N-monosubstituted thiosemicarbazones. Transition metal complexes with thiosemicarbazones exhibit a wide range of stereochemistries and possess potential biological activity. Metal complexes of thiosemicarbazones are proved to have improved pharmacological and therapeutic effects. The studies are conducted to bring about a fair understanding of the structure activity relationship and to develop certain effective and economical metal-based antimicrobial agents. Study showed that the thiosemicarbazones have antibacterial, antiviral and antiproliferative properties and hence used against tuberculosis, leprosy, psoriasis, rheumatism, trypanosomiasis and coccidiosis. Certain thiosemicarbazones showed a selective inhibition of HSV and HIV infections. The insolubility of most thiosemicarbazones in water causes difficulty in the oral administration in clinical practice. Transition metal complexes are found to have more activity than uncombined thiosemicarbazones. They exhibit a variety of denticity and can be varied by proper substitution. The stereochemistry assumed by the thiosemicarbazones during the coordination with transition metal ions depends on the factors such as preparative conditions and availability of additional bonding site in the ligand moiety and charge of the ligand. The resulting complexes exhibited a wide range of stereochemistries and have biomimic activity and potential application as sensors.
Resumo:
The primary aim of these investigations was to probe the spectroscopic, electrochemical, biological and single crystal X-ray diffraction studies of some selected transition metal complexes of 4N-monosubstituted thiosemicarbazones. Transition metal complexes with thiosemicarbazones exhibit a wide range of stereochemistries and possess potential biological activity. Metal complexes of thiosemicarbazones are proved to have improved pharmacological and therapeutic effects. The studies are conducted to bring about a fair understanding of the structure activity relationship and to develop certain effective and economical metal-based antimicrobial agents. Study showed that the thiosemicarbazones have antibacterial, antiviral and antiproliferative properties and hence used against tuberculosis, leprosy, psoriasis, rheumatism, trypanosomiasis and coccidiosis. Certain thiosemicarbazones showed a selective inhibition of HSV and HIV infections. The insolubility of most thiosemicarbazones in water causes difficulty in the oral administration in clinical practice. Transition metal complexes are found to have more activity than uncombined thiosemicarbazones. They exhibit a variety of denticity and can be varied by proper substitution. The stereochemistry assumed by the thiosemicarbazones during the coordination with transition metal ions depends on the factors such as preparative conditions and availability of additional bonding site in the ligand moiety and charge of the ligand. The resulting complexes exhibited a wide range of stereochemistries and have biomimic activity and potential application as sensors
Resumo:
This thesis Entitled phenylethynylarene based Donor-Acceptor systems:Desigh,Synthesis and Photophysical studies. A strategy for the design of donor-acceptor dyads, wherein decay of the charge separated (CS) state to low lying local triplet levels could possibly be prevented, is proposed. In order to examine this strategy, a linked donor-acceptor dyad BPEPPT with bis(phenylethYlly/)pyrene (BPEP) as the light absorber and acceptor and phenothiazine (PT) as donor was designed and photoinduced electron transfer in the dyad investigated. Absorption spectra of the dyad can be obtained by adding contributions due 10 the BPEP and PT moieties indicating that the constituents do not interact in the ground stale. Fluorescence of the BPEP moiety was efficiently quenched by the PT donor and this was attributed to electron lransfer from PT to BPEP. Picosecond transient absorption studies suggested formation of a charge separated state directly from the singlet excited state of BPEP. Nanosecond flash photolysis experiments gave long-ived transient absorptions assignable to PT radical cation and BPEP radical anion. These assignments were confirmed by oxygen quenching studies and secondary electron transfer experiments. Based on the available data, energy level diagram for BPEP-PT was constructed. The long lifetime of the charge separated state was attributed to the inverted region effects. The CS state did not undergo decay to low lying BPEP triplet indicating the success of our strategy
Resumo:
Eight new transition metal complexes of benzaldehyde-N(4)–phenylsemicarbazone have been synthesized and characterized by elemental analyses, molar conductance, electronic and infrared spectral studies. In all the complexes, the semicarbazone is coordinated as neutral bidentate ligand. 1H NMR spectrum of [Zn(HL)2(OAc)2] shows that there is no enolisation of the ligand in the complex. The magnetic susceptibility measurements indicate that Cr(III), Mn(II), Fe(III), Co(II) and Cu(II) complexes are paramagnetic and Ni(II) is diamagnetic. The EPR spectrum of [Mn(HL)2(OAc)2] in DMF solution at 77K shows hyperfine sextet with low intensity forbidden lines lying between each of the two main hyperfine lines. The g values calculated for the [Cu(HL)2SO4] complex in frozen DMF, indicate the presence of unpaired electron in the dx2−y2 orbital. The metal ligand bonding parameters evaluated showed strong in-plane bonding and in-plane bonding. The ligand and complexes were screened for their possible antimicrobial activities.
Resumo:
Four oxovanadium and one dioxovanadium complex with 2-hydroxyacetophenone N(4)- phenylthiosemicarbazone (H2L) which are represented as [VOLphen]·2H2O (1), [VOLbipy] (2), [VOLdmbipy] (3), [VOL]2 (4) and [VO2HL]·CH3OH (5) have been synthesized and characterized by elemental analyses, electronic, infrared and EPR spectral techniques. In all the complexes 1–4 the ligand coordinates through phenolic oxygen, azomethine nitrogen and thiolate sulfur. But in complex [VO2HL]·CH3OH, coordination takes place in thione form instead of thiolate sulfur. All the complexes except [VO2HL]·CH3OH are EPR active due to the presence of an unpaired electron. In frozen DMF at 77 K, all the oxovanadium(IV) complexes show axial anisotropy with two sets of eight line patterns
Resumo:
the thesis entitled “Ground and Excited State Electron Transfer Reaction Between a few Anthracene Appended Tertiary Amines and Suitable Electron Acceptors” portrays our attempts to explore the solvent, concentration and temperature effect of the reaction between a few (anthracen-9- yl)methanamines with electron acceptors like DMAD, DBA and DBE. We have also studied the effect of solvent and percentage fluorescence quenching in the photoinduced electron transfer reactions of these ‘donor-spacer-acceptor’ systems. Finally we look in to the intramolecular electron transfer reactions of a few tertiary amine appended dibenzobarrelenes and bisdibenzobarrelenes
Resumo:
Polymers with conjugated π-electron backbone display unusual electronic properties such as low energy optical transition, low ionization potentials, and high electron affinities. The properties that make these materials attractive include a wide range of electrical conductivity, mechanical flexibility and thermal stability. Some of the potential applications of these conjugated polymers are in sensors, solar cells, field effect transistors, field emission and electrochromic displays, supercapacitors and energy storage. With recent advances in the stability of conjugated polymer materials, and improved control of properties, a growing number of applications are currently being explored. Some of the important applications of conducting polymers include: they are used in electrostatic materials, conducting adhesives, shielding against electromagnetic interference (EMI), artificial nerves, aircraft structures, diodes, and transistors.