26 resultados para Performance Rating System
Resumo:
The present study by the researcher focuses attention on the problem of performance effectiveness among managers operating in one of the critical and socially important sectors of our economy namely commercial banking. The banking sector is selected for the study due to two reasons. Firstly, commercial banking plays an important role in the country's development. Secondly, for improving the efficiency of the banking system, we need to know more about the performance dynamics of the executives in our banking organizations
Resumo:
In the present work, the author has designed and developed all types of solar air heaters called porous and nonporous collectors. The developed solar air heaters were subjected to different air mass flow rates in order to standardize the flow per unit area of the collector. Much attention was given to investigate the performance of the solar air heaters fitted with baffles. The output obtained from the experiments on pilot models, helped the installation of solar air heating system for industrial drying applications also. Apart from these, various types of solar dryers, for small and medium scale drying applications, were also built up. The feasibility of ‘latent heat thermal energy storage system’ based on Phase Change Material was also undertaken. The application of solar greenhouse for drying industrial effluent was analyzed in the present study and a solar greenhouse was developed. The effectiveness of Computational Fluid Dynamics (CFD) in the field of solar air heaters was also analyzed. The thesis is divided into eight chapters.
Resumo:
An efficient passenger road transport system is a boon to any city and an inefficient one its bane. Passenger bus transport operation involves various aspects like passenger convenience, profitability of operation and social, technological and environmental factors. The author’s interest in this area was aroused when he conducted a traffic survey of Trivandrum City in 1979. While some studies on the performance of the Kerala State Road Transport Corporation in specific areas like finance, inventory control etc. have already been made, no study has been made from the operational point of view. The study is also the first one of its kind in dealing with the transportation problems for a second order city like Trivandrum. The objective of this research study is to develop a scientific basis for analysing and understanding the various operational aspects of urban bus transport management like assessing travel demand, depot location, fleet allocation, vehicle scheduling, maintenance etc. The operation of public road transportation in Trivandrum City is analysed on the basis of this theoretical background. The studies made have relevance to any medium sized city in India or even abroad. If not properly managed, deterioration of any public utility system is a natural process and it adversely affects the consumers, the economy and the nation. Making any system more efficient requires careful analysis, judicious decision making and proper implementation. It is hoped that this study will throw some light into the various operational aspects of urban passenger road transport management which can be of some help to make it perform more efficiently
Resumo:
Residue Number System (RNS) based Finite Impulse Response (FIR) digital filters and traditional FIR filters. This research is motivated by the importance of an efficient filter implementation for digital signal processing. The comparison is done in terms of speed and area requirement for various filter specifications. RNS based FIR filters operate more than three times faster and consumes only about 60% of the area than traditional filter when number of filter taps is more than 32. The area for RNS filter is increasing at a lesser rate than that for traditional resulting in lower power consumption. RNS is a nonweighted number system without carry propogation between different residue digits.This enables simultaneous parallel processing on all the digits resulting in high speed addition and multiplication in the RNS domain
Resumo:
A novel and fast technique for cryptographic applications is designed and developed using the symmetric key algorithm “MAJE4” and the popular asymmetric key algorithm “RSA”. The MAJE4 algorithm is used for encryption / decryption of files since it is much faster and occupies less memory than RSA. The RSA algorithm is used to solve the problem of key exchange as well as to accomplish scalability and message authentication. The focus is to develop a new hybrid system called MARS4 by combining the two cryptographic methods with an aim to get the advantages of both. The performance evaluation of MARS4 is done in comparison with MAJE4 and RSA.
Resumo:
Speech is the most natural means of communication among human beings and speech processing and recognition are intensive areas of research for the last five decades. Since speech recognition is a pattern recognition problem, classification is an important part of any speech recognition system. In this work, a speech recognition system is developed for recognizing speaker independent spoken digits in Malayalam. Voice signals are sampled directly from the microphone. The proposed method is implemented for 1000 speakers uttering 10 digits each. Since the speech signals are affected by background noise, the signals are tuned by removing the noise from it using wavelet denoising method based on Soft Thresholding. Here, the features from the signals are extracted using Discrete Wavelet Transforms (DWT) because they are well suitable for processing non-stationary signals like speech. This is due to their multi- resolutional, multi-scale analysis characteristics. Speech recognition is a multiclass classification problem. So, the feature vector set obtained are classified using three classifiers namely, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Naive Bayes classifiers which are capable of handling multiclasses. During classification stage, the input feature vector data is trained using information relating to known patterns and then they are tested using the test data set. The performances of all these classifiers are evaluated based on recognition accuracy. All the three methods produced good recognition accuracy. DWT and ANN produced a recognition accuracy of 89%, SVM and DWT combination produced an accuracy of 86.6% and Naive Bayes and DWT combination produced an accuracy of 83.5%. ANN is found to be better among the three methods.
Resumo:
Lack of a valid shrimp cell line has been hampering the progress of research on shrimp viruses. One of the reasons identified was the absence of an appropriate medium which would satisfy the requirements of the cells in vitro. We report the first attempt to formulate an exclusive shrimp cell culture medium (SCCM) based on the haemolymph components of Penaeus monodon prepared in isosmotic seawater having 27 % salinity. The SCCM is composed of 22 amino acids, 4 sugars, 6 vitamins, cholesterol, FBS, phenol red, three antibiotics, potassium dihydrogen phosphate and di-sodium hydrogen phosphate at pH 6.8–7.2. Osmolality was adjusted to 720 ± 10 mOsm kg-1 and temperature of incubation was 25 8C. The most appropriate composition was finally selected based on the extent of attachment of cells and their proliferation by visual observation. Metabolic activity of cultured cells was measured by MTT assay and compared with that in L-15 (29), modified L-15 and Grace’s insect medium, and found better performance in SCCM especially for lymphoid cells with 107 % increase in activity and 85 ± 9 days of longevity. The cells from ovary and lymphoid organs were passaged twice using the newly designed shrimp cell dissociation ‘‘cocktail’’.
Resumo:
In this paper, we propose a handwritten character recognition system for Malayalam language. The feature extraction phase consists of gradient and curvature calculation and dimensionality reduction using Principal Component Analysis. Directional information from the arc tangent of gradient is used as gradient feature. Strength of gradient in curvature direction is used as the curvature feature. The proposed system uses a combination of gradient and curvature feature in reduced dimension as the feature vector. For classification, discriminative power of Support Vector Machine (SVM) is evaluated. The results reveal that SVM with Radial Basis Function (RBF) kernel yield the best performance with 96.28% and 97.96% of accuracy in two different datasets. This is the highest accuracy ever reported on these datasets
Resumo:
Content Based Image Retrieval is one of the prominent areas in Computer Vision and Image Processing. Recognition of handwritten characters has been a popular area of research for many years and still remains an open problem. The proposed system uses visual image queries for retrieving similar images from database of Malayalam handwritten characters. Local Binary Pattern (LBP) descriptors of the query images are extracted and those features are compared with the features of the images in database for retrieving desired characters. This system with local binary pattern gives excellent retrieval performance
Resumo:
Learning Disability (LD) is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA) for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.
Resumo:
Biometrics is an efficient technology with great possibilities in the area of security system development for official and commercial applications. The biometrics has recently become a significant part of any efficient person authentication solution. The advantage of using biometric traits is that they cannot be stolen, shared or even forgotten. The thesis addresses one of the emerging topics in Authentication System, viz., the implementation of Improved Biometric Authentication System using Multimodal Cue Integration, as the operator assisted identification turns out to be tedious, laborious and time consuming. In order to derive the best performance for the authentication system, an appropriate feature selection criteria has been evolved. It has been seen that the selection of too many features lead to the deterioration in the authentication performance and efficiency. In the work reported in this thesis, various judiciously chosen components of the biometric traits and their feature vectors are used for realizing the newly proposed Biometric Authentication System using Multimodal Cue Integration. The feature vectors so generated from the noisy biometric traits is compared with the feature vectors available in the knowledge base and the most matching pattern is identified for the purpose of user authentication. In an attempt to improve the success rate of the Feature Vector based authentication system, the proposed system has been augmented with the user dependent weighted fusion technique.