47 resultados para Palatal expansion techniques
Resumo:
The present study aimed at the utlisation of microbial organisms for the
production of good quality chitin and chitosan. The three strains used for the
study were Lactobacillus plantarum, Lactobacililus brevis and Bacillus subtilis.
These strains were selected on the basis of their acid producing ability to reduce
the pH of the fermenting substrates to prevent spoilage and thus caused
demineralisation of the shell. Besides, the proteolytic enzymes in these strains
acted on proteinaceous covering of shrimp and thus caused deprotenisation of
shrimp shell waste. Thus the two processes involved in chitin production can be
affected to certain extent using bacterial fermentation of shrimp shell.Optimization parameters like fermentation period, quantity of inoculum,
type of sugar, concentration of sugar etc. for fermentation with three different
strains were studied. For these, parameters like pH, Total titrable acidity (TTA),
changes in sugar concentration, changes in microbial count, sensory changes
etc. were studied.Fermentation study with Lactobacillus plantarum was continued with 20%
w/v jaggery broth for 15 days. The inoculum prepared yislded a cell
concentration of approximately 108 CFU/ml. In the present study, lactic acid and
dilute hydrochloric acid were used for initial pH adjustment because; without
adjusting the initial pH, it took more than 5 hours for the lactic acid bacteria to
convert glucose to lactic acid and during this delay spoilage occurred due to
putrefying enzymes active at neutral or higher pH. During the fermentation study,
pH first decreased in correspondence with increase in TTA values. This showed
a clear indication of acid production by the strain. This trend continued till their
proteolytic activity showed an increasing trend. When the available sugar source
started depleting, proteolytic activity also decreased and pH increased. This was
clearly reflected in the sensory evaluation results. Lactic acid treated samples
showed greater extent of demineralization and deprotenisation at the end of
fermentation study than hydrochloric acid treated samples. It can be due to the
effect of strong hydrochloric acid on the initial microbial count, which directly
affects the fermentation process. At the end of fermentation, about 76.5% of ash was removed in lactic acid treated samples and 71.8% in hydrochloric acid
treated samples; 72.8% of proteins in lactic acid treated samples and 70.6% in
hydrochloric acid treated samples.The residual protein and ash in the fermented residue were reduced to
permissible limit by treatment with 0.8N HCI and 1M NaOH. Characteristics of
chitin like chitin content, ash content, protein content, % of N- acetylation etc.
were studied. Quality characteristics like viscosity, degree of deacetylation and
molecular weight of chitosan prepared were also compared. The chitosan
samples prepared from lactic acid treated showed high viscosity than HCI treated
samples. But degree of deacetylation is more in HCI treated samples than lactic
acid treated ones. Characteristics of protein liquor obtained like its biogenic
composition, amino acid composition, total volatile base nitrogen, alpha amino
nitrogen etc. also were studied to find out its suitability as animal feed
supplement.Optimization of fermentation parameters for Lactobacillus brevis
fermentation study was also conducted and parameters were standardized. Then
detailed fermentation study was done in 20%wlv jaggery broth for 17 days. Also
the effect of two different acid treatments (mild HCI and lactic acid) used for initial
pH adjustment on chitin production were also studied. In this study also trend of
changes in pH. changes in sugar concentration ,microbial count changes were
similar to Lactobacillus plantarum studies. At the end of fermentation, residual
protein in the samples were only 32.48% in HCI treated samples and 31.85% in
lactic acid treated samples. The residual ash content was about 33.68% in HCI
treated ones and 32.52% in lactic acid treated ones. The fermented residue was
converted to chitin with good characteristics by treatment with 1.2MNaOH and
1NHCI.Characteristics of chitin samples prepared were studied and extent of Nacetylation
was about 84% in HCI treated chitin and 85%in lactic acid treated
ones assessed from FTIR spectrum. Chitosan was prepared from these samples
by usual chemical method and its extent of solubility, degree of deacetylation,
viscosity and molecular weight etc were studied. The values of viscosity and
molecular weight of the samples prepared were comparatively less than the
chitosan prepared by Lactobacillus plantarum fermentation. Characteristics of protein liquor obtained were analyzed to determine its quality and is suitability as
animal feed supplement.Another strain used for the study was Bacillus subtilis and fermentation
was carried out in 20%w/v jaggery broth for 15 days. It was found that Bacillus
subtilis was more efficient than other Lactobacillus species for deprotenisation
and demineralization. This was mainly due to the difference in the proteolytic
nature of the strains. About 84% of protein and 72% of ash were removed at the
end of fermentation. Considering the statistical significance (P
Resumo:
Medical fields requires fast, simple and noninvasive methods of diagnostic techniques. Several methods are available and possible because of the growth of technology that provides the necessary means of collecting and processing signals. The present thesis details the work done in the field of voice signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this thesis is to characterize complexities of pathological voice from healthy signals and to differentiate stuttering signals from healthy signals. Efficiency of various acoustic as well as non linear time series methods are analysed. Three groups of samples are used, one from healthy individuals, subjects with vocal pathologies and stuttering subjects. Individual vowels/ and a continuous speech data for the utterance of the sentence "iruvarum changatimaranu" the meaning in English is "Both are good friends" from Malayalam language are recorded using a microphone . The recorded audio are converted to digital signals and are subjected to analysis.Acoustic perturbation methods like fundamental frequency (FO), jitter, shimmer, Zero Crossing Rate(ZCR) were carried out and non linear measures like maximum lyapunov exponent(Lamda max), correlation dimension (D2), Kolmogorov exponent(K2), and a new measure of entropy viz., Permutation entropy (PE) are evaluated for all three groups of the subjects. Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. The results shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Permutation entropy is well suited due to its sensitivity to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. Pathological groups have higher entropy values compared to the normal group. The stuttering signals have lower entropy values compared to the normal signals.PE is effective in charaterising the level of improvement after two weeks of speech therapy in the case of stuttering subjects. PE is also effective in characterizing the dynamical difference between healthy and pathological subjects. This suggests that PE can improve and complement the recent voice analysis methods available for clinicians. The work establishes the application of the simple, inexpensive and fast algorithm of PE for diagnosis in vocal disorders and stuttering subjects.
Resumo:
Sonar signal processing comprises of a large number of signal processing algorithms for implementing functions such as Target Detection, Localisation, Classification, Tracking and Parameter estimation. Current implementations of these functions rely on conventional techniques largely based on Fourier Techniques, primarily meant for stationary signals. Interestingly enough, the signals received by the sonar sensors are often non-stationary and hence processing methods capable of handling the non-stationarity will definitely fare better than Fourier transform based methods.Time-frequency methods(TFMs) are known as one of the best DSP tools for nonstationary signal processing, with which one can analyze signals in time and frequency domains simultaneously. But, other than STFT, TFMs have been largely limited to academic research because of the complexity of the algorithms and the limitations of computing power. With the availability of fast processors, many applications of TFMs have been reported in the fields of speech and image processing and biomedical applications, but not many in sonar processing. A structured effort, to fill these lacunae by exploring the potential of TFMs in sonar applications, is the net outcome of this thesis. To this end, four TFMs have been explored in detail viz. Wavelet Transform, Fractional Fourier Transfonn, Wigner Ville Distribution and Ambiguity Function and their potential in implementing five major sonar functions has been demonstrated with very promising results. What has been conclusively brought out in this thesis, is that there is no "one best TFM" for all applications, but there is "one best TFM" for each application. Accordingly, the TFM has to be adapted and tailored in many ways in order to develop specific algorithms for each of the applications.
Resumo:
Among the large number of photothcrmal techniques available, photoacoustics assumes a very significant place because of its essential simplicity and the variety of applications it finds in science and technology. The photoacoustic (PA) effect is the generation of an acoustic signal when a sample, kept inside an enclosed volume, is irradiated by an intensity modulated beam of radiation. The radiation absorbed by the sample is converted into thermal waves by nonradiative de-excitation processes. The propagating thermal waves cause a corresponding expansion and contraction of the gas medium surrounding the sample, which in tum can be detected as sound waves by a sensitive microphone. These sound waves have the same frequency as the initial modulation frequency of light. Lock-in detection method enables one to have a sufficiently high signal to noise ratio for the detected signal. The PA signal amplitude depends on the optical absorption coefficient of the sample and its thermal properties. The PA signal phase is a function of the thermal diffusivity of the sample.Measurement of the PA amplitude and phase enables one to get valuable information about the thermal and optical properties of the sample. Since the PA signal depends on the optical and thennal properties of the sample, their variation will get reflected in the PA signal. Therefore, if the PA signal is collected from various points on a sample surface it will give a profile of the variations in the optical/thennal properties across the sample surface. Since the optical and thermal properties are affected by the presence of defects, interfaces, change of material etc. these will get reflected in the PA signal. By varying the modulation frequency, we can get information about the subsurface features also. This is the basic principle of PA imaging or PA depth profiling. It is a quickly expanding field with potential applications in thin film technology, chemical engineering, biology, medical diagnosis etc. Since it is a non-destructive method, PA imaging has added advantages over some of the other imaging techniques. A major part of the work presented in this thesis is concemed with the development of a PA imaging setup that can be used to detect the presence of surface and subsmface defects in solid samples.Determination of thermal transport properties such as thermal diffusivity, effusivity, conductivity and heat capacity of materials is another application of photothennal effect. There are various methods, depending on the nature of the sample, to determine these properties. However, there are only a few methods developed to determine all these properties simultaneously. Even though a few techniques to determine the above thermal properties individually for a coating can be found in literature, no technique is available for the simultaneous measurement of these parameters for a coating. We have developed a scanning photoacoustic technique that can be used to determine all the above thermal transport properties simultaneously in the case of opaque coatings such as paints. Another work that we have presented in this thesis is the determination of thermal effusivity of many bulk solids by a scanning photoacoustic technique. This is one of the very few methods developed to determine thermal effiisivity directly.
Resumo:
International School of Photonics, Cochin University of Science and Technology
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.
Resumo:
Wind energy has emerged as a major sustainable source of energy.The efficiency of wind power generation by wind mills has improved a lot during the last three decades.There is still further scope for maximising the conversion of wind energy into mechanical energy.In this context,the wind turbine rotor dynamics has great significance.The present work aims at a comprehensive study of the Horizontal Axis Wind Turbine (HAWT) aerodynamics by numerically solving the fluid dynamic equations with the help of a finite-volume Navier-Stokes CFD solver.As a more general goal,the study aims at providing the capabilities of modern numerical techniques for the complex fluid dynamic problems of HAWT.The main purpose is hence to maximize the physics of power extraction by wind turbines.This research demonstrates the potential of an incompressible Navier-Stokes CFD method for the aerodynamic power performance analysis of horizontal axis wind turbine.The National Renewable Energy Laboratory USA-NREL (Technical Report NREL/Cp-500-28589) had carried out an experimental work aimed at the real time performance prediction of horizontal axis wind turbine.In addition to a comparison between the results reported by NREL made and CFD simulations,comparisons are made for the local flow angle at several stations ahead of the wind turbine blades.The comparison has shown that fairly good predictions can be made for pressure distribution and torque.Subsequently, the wind-field effects on the blade aerodynamics,as well as the blade/tower interaction,were investigated.The selected case corresponded to a 12.5 m/s up-wind HAWT at zero degree of yaw angle and a rotational speed of 25 rpm.The results obtained suggest that the present can cope well with the flows encountered around wind turbines.The areodynamic performance of the turbine and the flow details near and off the turbine blades and tower can be analysed using theses results.The aerodynamic performance of airfoils differs from one another.The performance mainly depends on co-efficient of performnace,co-efficient of lift,co-efficient of drag, velocity of fluid and angle of attack.This study shows that the velocity is not constant for all angles of attack of different airfoils.The performance parameters are calculated analytically and are compared with the standardized performance tests.For different angles of ,the velocity stall is determined for the better performance of a system with respect to velocity.The research addresses the effect of surface roughness factor on the blade surface at various sections.The numerical results were found to be in agreement with the experimental data.A relative advantage of the theoretical aerofoil design method is that it allows many different concepts to be explored economically.Such efforts are generally impractical in wind tunnels because of time and money constraints.Thus, the need for a theoretical aerofoil design method is threefold:first for the design of aerofoil that fall outside the range of applicability of existing calalogs:second,for the design of aerofoil that more exactly match the requirements of the intended application:and third,for the economic exploration of many aerofoil concepts.From the results obtained for the different aerofoils,the velocity is not constant for all angles of attack.The results obtained for the aerofoil mainly depend on angle of attack and velocity.The vortex generator technique was meticulously studies with the formulation of the specification for the right angle shaped vortex generators-VG.The results were validated in accordance with the primary analysis phase.The results were found to be in good agreement with the power curve.The introduction of correct size VGs at appropriate locations over the blades of the selected HAWT was found to increase the power generation by about 4%
Resumo:
The present thesis report the results obtained from the studies carried out on the laser blow off plasma (LBO) from LiF-C (Lithium Fluoride with Carbon) thin film target, which is of particular importance in Tokamak plasma diagnostics. Keeping in view of its significance, plasma generated by the irradiation of thin film target by nanosecond laser pulses from an Nd:YAG laser over the thin film target has been characterized by fast photography using intensified CCD. In comparison to other diagnostic techniques, imaging studies provide better understanding of plasma geometry (size, shape, divergence etc) and structural formations inside the plume during different stages of expansion.
Resumo:
After skin cancer, breast cancer accounts for the second greatest number of cancer diagnoses in women. Currently the etiologies of breast cancer are unknown, and there is no generally accepted therapy for preventing it. Therefore, the best way to improve the prognosis for breast cancer is early detection and treatment. Computer aided detection systems (CAD) for detecting masses or micro-calcifications in mammograms have already been used and proven to be a potentially powerful tool , so the radiologists are attracted by the effectiveness of clinical application of CAD systems. Fractal geometry is well suited for describing the complex physiological structures that defy the traditional Euclidean geometry, which is based on smooth shapes. The major contribution of this research include the development of • A new fractal feature to accurately classify mammograms into normal and normal (i)With masses (benign or malignant) (ii) with microcalcifications (benign or malignant) • A novel fast fractal modeling method to identify the presence of microcalcifications by fractal modeling of mammograms and then subtracting the modeled image from the original mammogram. The performances of these methods were evaluated using different standard statistical analysis methods. The results obtained indicate that the developed methods are highly beneficial for assisting radiologists in making diagnostic decisions. The mammograms for the study were obtained from the two online databases namely, MIAS (Mammographic Image Analysis Society) and DDSM (Digital Database for Screening Mammography.
Resumo:
Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.
Resumo:
The application of computer vision based quality control has been slowly but steadily gaining importance mainly due to its speed in achieving results and also greatly due to its non- destnictive nature of testing. Besides, in food applications it also does not contribute to contamination. However, computer vision applications in quality control needs the application of an appropriate software for image analysis. Eventhough computer vision based quality control has several advantages, its application has limitations as to the type of work to be done, particularly so in the food industries. Selective applications, however, can be highly advantageous and very accurate.Computer vision based image analysis could be used in morphometric measurements of fish with the same accuracy as the existing conventional method. The method is non-destructive and non-contaminating thus providing anadvantage in seafood processing.The images could be stored in archives and retrieved at anytime to carry out morphometric studies for biologists.Computer vision and subsequent image analysis could be used in measurements of various food products to assess uniformity of size. One product namely cutlet and product ingredients namely coating materials such as bread crumbs and rava were selected for the study. Computer vision based image analysis was used in the measurements of length, width and area of cutlets. Also the width of coating materials like bread crumbs was measured.Computer imaging and subsequent image analysis can be very effectively used in quality evaluations of product ingredients in food processing. Measurement of width of coating materials could establish uniformity of particles or the lack of it. The application of image analysis in bacteriological work was also done
Resumo:
Nonlinearity is a charming element of nature and Nonlinear Science has now become one of the most important tools for the fundamental understanding of the nature. Solitons— solutions of a class of nonlinear partial differential equations — which propagate without spreading and having particle— like properties represent one of the most striking aspects of nonlinear phenomena. The study of wave propagation through nonlinear media has wide applications in different branches of physics.Different mathematical techniques have been introduced to study nonlinear systems. The thesis deals with the study of some of the aspects of electromagnetic wave propagation through nonlinear media, viz, plasma and ferromagnets, using reductive perturbation method. The thesis contains 6 chapters
Resumo:
Spike disease in sandal is generally diagnosed by the manifestation of external symptoms. Attempts have been made to detect the diseased plants by determining the length/breadth ratio of leaves (lyengar, 1961) and histochemical tests using Mann's stain (Parthasarathi et al., 1966), Dienes' stain (Ananthapadmanabha et a/., 1973) aniline blue and Hoechst 33258 (Ghosh et a/., 1985, Rangaswamy, 1995). But most of these techniques are insensitive, indirect detection methods leading to misinterpretation of results. Moreover, to identify disease resistant sandal trees, highly sensitive techniques are needed to detect the presence of the pathogen. In sandal forests, several host plants of sandal like Zizyphus oenop/ea (Fig. 1.3) also exhibit the yellows type disease symptoms. Immunological and molecular assays have to be developed to confirm the presence of sandal spike phytoplasma in such hosts. The major objectives of the present work includes:In situ detection of sandal spike phytoplasma by epifluorescence microscopy and scanning electron microscopy.,Purification of sandal spike phytoplasma and production of polyclonal antibodies.,Amino acid and total protein estimation of sandal spike phytoplasma.,Immunological detection of sandal spike phytoplasma., Molecular detection of sandal spike phytoplasma.,Screening for phytoplasma in host plants of spike disease affected sandal using immunological and molecular techniques.
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
Microarray data analysis is one of data mining tool which is used to extract meaningful information hidden in biological data. One of the major focuses on microarray data analysis is the reconstruction of gene regulatory network that may be used to provide a broader understanding on the functioning of complex cellular systems. Since cancer is a genetic disease arising from the abnormal gene function, the identification of cancerous genes and the regulatory pathways they control will provide a better platform for understanding the tumor formation and development. The major focus of this thesis is to understand the regulation of genes responsible for the development of cancer, particularly colorectal cancer by analyzing the microarray expression data. In this thesis, four computational algorithms namely fuzzy logic algorithm, modified genetic algorithm, dynamic neural fuzzy network and Takagi Sugeno Kang-type recurrent neural fuzzy network are used to extract cancer specific gene regulatory network from plasma RNA dataset of colorectal cancer patients. Plasma RNA is highly attractive for cancer analysis since it requires a collection of small amount of blood and it can be obtained at any time in repetitive fashion allowing the analysis of disease progression and treatment response.