23 resultados para Optical emission spectroscopy


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Time and space resolved studies of emission from CN molecules have been carried out in the plasma produced from graphite target by 1.06 urn pulses from a Q-switched Nd:YAG laser. Depending on the laser pulse energy, time of observation and position of the sampled volume of the plasma, the features of the emission spectrum are found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as functions of distance, time, laser energy and ambient gas pressure. Evidence for nonlinear effects of the plasma medium such as self focusing which exhibits threshold-like behaviour are also obtained. Temperature and electron density of the plasma have been evaluated using the relative line intensities of successive ionization stages of carbon atom. These electron density measurements are verified by using Stark broadening method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stable, OH free zinc oxide (ZnO) nanoparticles were synthesized by hydrothermal method by varying the growth temperature and concentration of the precursors. The formation of ZnO nanoparticles were confirmed by x-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) studies. The average particle size have been found to be about 7-24 nm and the compositional analysis is done with inductively coupled plasma atomic emission spectroscopy (ICP-AES). Diffuse reflectance spectroscopy (DRS) results shows that the band gap of ZnO nanoparticles is blue shifted with decrease in particle size. Photoluminescence properties of ZnO nanoparticles at room temperature were studied and the green photoluminescent emission from ZnO nanoparticles can originate from the oxygen vacancy or ZnO interstitial related defects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spectroscopic studies of laser -induced plasma from a high-temperature superconducting material, viz., YBa2Cu3O7 (YBCO), have been carried out. Electron temperature and electron density measurements were made from spectral data. The Stark broad ening of emission lines was used to determine the electron density, and the ratio of line in tensities was exploited for the determination of electron temperature. An initial electron temperature of 2.35 eV and electron density of 2.5 3 1017 cm2 3 were observed. The dependence on electron temperature and density on different experimental parameters such as distance from the target, delay time after the in itiation of the plasm a, and laser irradiance is also discussed in detail. Index Headings: Laser -plasma spectroscopy; Plasma diagnostics; Emission spectroscop y; YBa2Cu3O7.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

YBa2Cu307 target was laser ablated, and the time-of-flight (TOF) distributions of Y, Y+., and YO in the resultant plasma were investigated as functions of distance from the target and laser energy density using emission spectroscopy. Up to a short distance from the target (-1.5 cm), TOF distributions show twin peaks for Y and YO, while only single-peak distribution is observed for Y+. At greater distances (>1.5 cm) all of them exhibit single-peak distribution. The twin peaks are assigned to species corresponding to those generated directly/m the vicinity of target surface and to those generated from collisional/recombination process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The laser produced plasma from the multi-component target YBa2CU3O7 was analyzed using Michelson interferometry and time resolved emission spectroscopy. The interaction of 10 ns pulses of 1.06 mum radiation from a Q-switched Nd:YAG laser at laser power densities ranging from 0.55 GW cm-2 to 1.5 GW cm-2 has been studied. Time resolved spectral measurements of the plasma evolution show distinct features at different points in its temporal history. For a time duration of less than 55 ns after the laser pulse (for a typical laser power density of 0.8 GW cm-2, the emission spectrum is dominated by black-body radiation. During cooling after 55 ns the spectral emission consists mainly of neutral and ionic species. Line averaged electron densities were deduced from interferometric line intensity measurements at various laser power densities. Plasma electron densities are of the order of 1017 cm-3 and the plasma temperature at the core region is about 1 eV. The measurement of plasma emission line intensities of various ions inside the plasma gave evidence of multiphoton ionization of the elements constituting the target at low laser power densities. At higher laser power densities the ionization mechanism is collision dominated. For elements such as nitrogen present outside the target, ionization is due to collisions only.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis of the emission bands of the CN molecules in the plasma generated from a graphite target irradiated with 1-06/~m radiation pulses from a Q-switched Nd:YAG laser has been done. Depending on the position of the sampled volume of the plasma plume, the intensity distribution in the emission spectra is found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as function of distance from the target for different time delays with respect to the incidence of the laser pulse. The translational temperature calculated from time of flight is found to be higher than the observed vibrational temperature for CN molecules and the reason for this is explained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present thesis report the results obtained from the studies carried out on the laser blow off plasma (LBO) from LiF-C (Lithium Fluoride with Carbon) thin film target, which is of particular importance in Tokamak plasma diagnostics. Keeping in view of its significance, plasma generated by the irradiation of thin film target by nanosecond laser pulses from an Nd:YAG laser over the thin film target has been characterized by fast photography using intensified CCD. In comparison to other diagnostic techniques, imaging studies provide better understanding of plasma geometry (size, shape, divergence etc) and structural formations inside the plume during different stages of expansion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the results of a study on the use of rice husk ash (RHA) for property modification of high density polyethylene (HDPE). Rice husk is a waste product of the rice processing industry. It is used widely as a fuel which results in large quantities of RHA. Here, the characterization of RHA has been done with the help of X-ray diffraction (XRD), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES), light scattering based particle size analysis, Fourier transform infrared spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Most reports suggest that RHA when blended directly with polymers without polar groups does not improve the properties of the polymer substantially. In this study RHA is blended with HDPE in the presence of a compatibilizer. The compatibilized HDPE-RHA blend has a tensile strength about 18% higher than that of virgin HDPE. The elongation-at-break is also higher for the compatibilized blend. TGA studies reveal that uncompatibilized as well as compatibilized HDPERHA composites have excellent thermal stability. The results prove that RHA is a valuable reinforcing material for HDPE and the environmental pollution arising from RHA can be eliminated in a profitable way by this technique.