20 resultados para Operate
Resumo:
A packed bed bioreactor (PBBR) was developed for rapid establishment of nitrification in brackish water hatchery systems in the tropics. The reactors were activated by immobilizing ammonia-oxidizing (AMONPCU- 1) and nitrite-oxidizing (NIONPCU-1) bacterial consortia on polystyrene and low-density polyethylene beads, respectively. Fluorescence in situ hybridization demonstrated the presence of autotrophic nitrifiers belong to Nitrosococcus mobilis, lineage of b ammonia oxidizers and nitrite oxidizer Nitrobacter sp. in the consortia. The activated reactors upon integration to the hatchery system resulted in significant ammonia removal (P\0.01) culminating to its undetectable levels. Consequently, a significantly higher percent survival of larvae was observed in the larval production systems. With spent water the reactors could establish nitrification with high percentage removal of ammonia (78%), nitrite (79%) and BOD (56%) within 7 days of initiation of the process. PBBR is configured in such a way to minimize the energy requirements for continuous operation by limiting the energy inputs to a single stage pumping of water and aeration to the aeration cells. The PBBR shall enable hatchery systems to operate under closed recirculating mode and pave the way for better water management in the aquaculture industry.
Resumo:
A compact microstrip multiband antenna on a modified ground plane which can operate over the bands starting from 900 MHz to 5.35 GHz which includes the GSM (880-960) GPS (1568-1592 MHz), DCS (1710-1880 MHz), and PCS (1850- 1990 MHz). UMTS (1920-2170 MHz), IEEE 802.11 b/g (2400- 2484) and WLAN IEEE 802.11a band (5.15-5.35) is reported in this paper. The overall dimension of the antenna is 33 x 33 mm2 including the top patch with a dimension 22 x 22 mm2. The experimental results of the antenna are presented in this paper. The results confirm that the antenna exhibits wide band characteristics and covers 7 bands of operation
Resumo:
Refiners today operate their equipment for prolonged periods without shutdown. This is primarily due to the increased pressures of the market resulting in extended shutdown-to-shutdown intervals. This places extreme demands on the reliability of the plant equipment. The traditional methods of reliability assurance, like Preventive Maintenance, Predictive Maintenance and Condition Based Maintenance become inadequate in the face of such demands. The alternate approaches to reliability improvement, being adopted the world over are implementation of RCFA programs and Reliability Centered Maintenance. However refiners and process plants find it difficult to adopt this standardized methodology of RCM mainly due to the complexity and the large amount of analysis that needs to be done, resulting in a long drawn out implementation, requiring the services of a number of skilled people. These results in either an implementation restricted to only few equipment or alternately, one that is non-standard. The paper presents the current models in use, the core requirements of a standard RCM model, the alternatives to classical RCM, limitations in the existing model, classical RCM and available alternatives to RCM and will then go on to present an ‗Accelerated‘ approach to RCM implementation, that, while ensuring close conformance to the standard, does not place a large burden on the implementers
Resumo:
The Human race of our century is in gluttonous search for novel engineering products which led to a skyrocketed progress in research and fabrication of filled polymers. Recently, a big window has been opened up for speciality polymers especially elastomers with promising properties. Among the many reasons why rubbers are widely used in the process industries, three are considered as important. Firstly, rubbers operate in a variety of environments and possess usable ranges of deformity and durability and can be exploited through suitable and more or less conventional equipment design principles. Secondly, rubber is an eminently suitable construction material for protection against corrosion in the chemical plant and equipment against various corrosive chemicals as, acids and alkalies and if property tailored, can shield ionising radiations as X-rays and gamma rays in medical industry, with minimum maintenance lower down time, negligible corrosion and a preferred choice for aggressive corroding and ionising environment. Thirdly, rubber can readily and hastily, and at a relatively lower cost, be converted into serviceable products, having intricate shapes and dimensions. In a century’s gap, large employment of flexible polymer materials in the different segments of industry has stimulated the development of new materials with special properties, which paved its way to the synthesis of various nanoscale materials. At nano scale, one makes an entry into a world where multidisciplinary sciences meet and utilises the previously unapproached infinitesimal length scale, having dimension which measure upto one billionth of a meter, to create novel properties. The nano fillers augment the elastomers properties in an astonishing fashion due to their multifunctional nature and unprecedented properties have been exhibited by these polymer-nanocomposites just to beat the shortcomings of traditional micro composites. The current research aims to investigate the possibility of using synthesised nano barium sulphate for fabricating elastomer-based nanocomposites and thereby imparting several properties to the rubber. In this thesis, nano materials, their synthesis, structure, properties and applications are studied. The properties of barium sulphate like chemical resistance and radiopacity have been utilized in the present study and is imparted to the elastomers by preparing composites
Resumo:
The aim of this study is to investigate the role of operational flexibility for effective project management in the construction industry. The specific objectives are to: a) Identify the determinants of operational flexibility potential in construction project management b) Investigate the contribution of each of the determinants to operational flexibility potential in the construction industry c) Investigate on the moderating factors of operational flexibility potential in a construction project environment d) Investigate whether moderated operational flexibility potential mediates the path between predictors and effective construction project management e) Develop and test a conceptual model of achieving operational flexibility for effective project management The purpose of this study is to findout ways to utilize flexibility inorder to manage uncertain project environment and ultimately achieve effective project management. In what configuration these operational flexibility determinants are demanded by construction project environment in order to achieve project success. This research was conducted in three phases, namely: (i) exploratory phase (ii) questionnaire development phase; and (iii) data collection and analysis phase. The study needs firm level analysis and therefore real estate developers who are members of CREDAI, Kerala Chapter were considered. This study provides a framework on the functioning of operational flexibility, offering guidance to researchers and practitioners for discovering means to gain operational flexibility in construction firms. The findings provide an empirical understanding on kinds of resources and capabilities a construction firm must accumulate to respond flexibly to the changing project environment offering practitioners insights into practices that build firms operational flexibility potential. Firms are dealing with complex, continuous changing and uncertain environments due trends of globalization, technical changes and innovations and changes in the customers’ needs and expectations. To cope with the increasingly uncertain and quickly changing environment firms strive for flexibility. To achieve the level of flexibility that adds value to the customers, firms should look to flexibility from a day to day operational perspective. Each dimension of operational flexibility is derived from competences and capabilities. In this thesis only the influence on customer satisfaction and learning exploitation of flexibility dimensions which directly add value in the customers eyes are studied to answer the followingresearch questions: “What is the impact of operational flexibility on customer satisfaction?.” What are the predictors of operational flexibility in construction industry? .These questions can only be answered after answering the questions like “Why do firms need operational flexibility?” and “how can firms achieve operational flexibility?” in the context of the construction industry. The need for construction firms to be flexible, via the effective utilization of organizational resources and capabilities for improved responsiveness, is important because of the increasing rate of changes in the business environment within which they operate. Achieving operational flexibility is also important because it has a significant correlation with a project effectiveness and hence a firm’s turnover. It is essential for academics and practitioners to recognize that the attainment of operational flexibility involves different types namely: (i) Modification (ii) new product development and (iii) demand management requires different configurations of predictors (i.e., resources, capabilities and strategies). Construction firms should consider these relationships and implement appropriate management practices for developing and configuring the right kind of resources, capabilities and strategies towards achieving different operational flexibility types.