29 resultados para Multiple antibiotic resistance


Relevância:

90.00% 90.00%

Publicador:

Resumo:

During last decades there has been a continuous growth of aquaculture industries all over the world and taking into consideration the spurt in freshwater ornamental fish aquaculture and trade in Kerala, the present study was aimed to assess the prevalence of various motile Aeromonas spp. in fresh water ornamental fishes and associated carriage water. The extracellular virulence factors and the antibiogram of the isolates were also elucidated. Various species of motile aeromonads such as Aeromonas caviae, A. hydrophila, A. jandaei, A. schubertii, A. sobria, A. trota and A. veronii were detected. Aeromonas sobria predominated both fish and water samples. Extracellular enzymes and toxins produced by motile aeromonds are important elements of bacterial virulence. The production of extracellular virulence factors - proteases, lipase, DNase and haemolysin by the isolates were studied. All the isolates from both fish and water samples produced gelatinase and nuclease but the ability to produce lipase, caseinase and haemolysins was found to vary among isolates from different sources. Among the 15 antibiotics to which the isolates were tested, all the isolates were found to be sensitive to chloramphenicol, ciprofloxacin and gentamicin and resistant to amoxycillin. Local aquarists maintain the fish in crowded stressful conditions, which could trigger infections by the obligate/ opportunistic pathogenic members among motile aeromonads

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A study was conducted to determine the incidence of Salmonella enterica serovar Enteritidis and other Salmonella serovars on eggshell, egg contents and on egg-storing trays. A total of 492 eggs and 82 egg-storing trays were examined over a period of 1 year from different retail outlets of a residential area of Coimbatore city, South India. Salmonella contamination was recorded in 38 of 492 (7.7%) eggs out of which 29 was in eggshell (5.9%) and 9 in egg contents (1.8%). Around 7.5% of the egg-storing trays were also found to be contaminated with Salmonella. Serotyping of the Salmonella strains showed that 89.7% of the strains from eggshell, 100% of the strains from egg contents and 71.4% of the strains from egg-storing trays were Salmonella Enteritidis. Other serovarvars encountered were S. Cerro, S. Molade and S. Mbandaka from eggshell and S. Cerro from egg-storing trays. Seasonal variations in the prevalence pattern were identified with, a higher prevalence during monsoon months followed by post-monsoon and premonsoon. Further examination of the Salmonella strains was carried out by testing their antimicrobial sensitivity against 10 commonly used antimicrobials. Results revealed high prevalence of multiple antimicrobial resistance among these strains suggesting possible prior selection by use of antimicrobials in egg production

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A study was conducted to determine the incidence of Salmonella enterica serovar Enteritidis and other Salmonella serovars on eggshell, egg contents and on egg-storing trays. A total of 492 eggs and 82 egg-storing trays were examined over a period of 1 year from different retail outlets of a residential area of Coimbatore city, South India. Salmonella contamination was recorded in 38 of 492 (7.7%) eggs out of which 29 was in eggshell (5.9%) and 9 in egg contents (1.8%). Around 7.5% of the egg-storing trays were also found to be contaminated with Salmonella. Serotyping of the Salmonella strains showed that 89.7% of the strains from eggshell, 100% of the strains from egg contents and 71.4% of the strains from egg-storing trays were Salmonella Enteritidis. Other serovarvars encountered were S. Cerro, S. Molade and S. Mbandaka from eggshell and S. Cerro from egg-storing trays. Seasonal variations in the prevalence pattern were identified with, a higher prevalence during monsoon months followed by post-monsoon and premonsoon. Further examination of the Salmonella strains was carried out by testing their antimicrobial sensitivity against 10 commonly used antimicrobials. Results revealed high prevalence of multiple antimicrobial resistance among these strains suggesting possible prior selection by use of antimicrobials in egg production

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The incidence of salmonella and escherichia coli in chicken retail outlets in a residential area of coimbatore, Tamilnadu India was studied with the view that accessories may be a source of cross contamination.Accessories like cages,knives ,chopping boards weighing balance trays and the hands of butcher were examined.A toatal of 14 salmonella as well as 31 E.coli were isolated from different sources. The incidence of E.coli was higher than that of Salmonella.The highest incidence of Salmonella was found in chopping boards and the maximum level of E.Coli was detected in cages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While the seriousness of the problem of antibiotic resistance is now recognized, the complex web of resistance linking humans, animals, and the environment is getting realized. More often, antibiotics are used as a preventive measure against diseases. Antibiotic use for agriculture leads to the increased resistance in the environment since antibiotics are inevitable element during agriculture/aquaculture and antibiotic residues are excreted as waste that is frequently spread onto farmland as organic fertilizer. Fecal bacteria survive long periods in the environment and spread through runoff into groundwater, rivers, and marine ecosystems.However, horizontal gene transfer occurs in the animals and guts of humans and in a variety of ecosystems, creating a pool of resistance in the rice fields and open waters. Even if people are not in direct contact with resistant disease through food animals, there are chances of contact with resistant fecal pathogens from the environment. Additionally, pathogens that are autochthonous to the environment can acquire resistance genes from the environment. Our study revealed that autochthonous , bacteria Vibrio spp gained antibiotic resistance in the environment. Further, it was evident that horizontal gene transfer occurs in Vibrio by means of plasmids, which further augments the gravity of the problem. Non-pathogenic bacteria may also acquire resistance genes and serve as a continuing source of resistance for other bacteria, both in the environment, and in the human gut. As the effectiveness of antibiotics for medical applications decline, the indiscriminate use of in aquaculture and in humans can have disastrous conditions in future due to horizontal gene transfer and the spread of resistant organisms: We must recognize and deal with the threat posed by overuse of antibiotics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A rare horizontal gene transfer event could be traced. The movement of the SXT element among the Vibrionaceae could be followed. This element was first reported from Vibrio cholerae and in this study the same could be confirmed in Vibrio alginolyticus. Events such as these, which take place with respect to other virulence/virulence associated genes, may lead to the emergence of pathogenic strains from hitherto non-pathogens or may even give rise to new pathogens. The results generated in the course of this study paves way for further characterization and detailed study, especially with respect to those strains which showed gastric fluid accumulation in the in vivo suckling mouse assay. Antibiotic resistance pattern shown by a sample population of Vibrios can be used for deciding treatment options. There is enough scope for further research on these topics towards generating basic knowledge, which can be of immense significance in human and aquaculture health.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis is Studies on the Effect or the Obganophosphorus Pesticide Ekalux(R) EC 25 on the Bacterial Flora or Villorita Cyprinoides Var.Cochinensis (Hanley). For the present investigation, the black clam Villorita gyprinoides var. cochinensis (Hanley), a most common clam genus present in this estuarine system has been selected as test organaism and Ekalux (R) EC 25 as toxicant. The aspects dealt with are 1. Total heterotrophic bacterial population, 2. Generic composition, 3. Hydrolytic enzyme producing bacteria, 4. Antibiotic resistance, 5. Heavy metal resistance, 6. The effect of pesticide concentration on the growth of the bacteria and 7. Effect of temperature, pH and sodium chloride on the growth and phosphate release of selected isolates.The samples for the experiment were collected from the Vembanad Lake, near Kumbalam Island during the period of September 1985 to May '86. The THB of the estuarine water and clams contained 6.5 x I04/ml and 2.975 x l06/g respectively, immediately after collection. Untreated water and clam samples showed enormous increase in THB from 0 hr population. The treated samples (water and clams) contained higher THB than 0 hr. In general, THB was observed to increase tremendously in the samples treated with pesticide when compared to their native flora. With reference to various concentrations of pesticides, THB recorded an increase with increase of concentration in water and clam samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Emergence of antibiotic resistance among aquaculture pathogens has made it necessary to look into environment friendly, effective and sustainable methods such as probiotic and immunostimulants among others.. In the present study, LAB were isolated from the gut of fish species namely Rastrelliger kanagurta and analyzed for their antibacterial activity against various fish, shrimp and human pathogens. Different LAB species such as Lactobacillus plantarum, L. bulgaricus, L. brevis and L. viridiscens were encountered in the gut of R. kanagurta. Several strains showed good activity against fish, shrimp and human pathogens. LAB from the gut of such marine species may be developed as possible probiont for environment friendly health management of fresh water, estuarine and marine species currently exploited in aquaculture

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study we address the issue on gut associated lactic acid bacteria (LAB) isolated from the intestine of estuarine fish Mugil cephalus using de Man Rogossa and Sharpe (MRS) agar. LAB isolates were identified biochemically and screened for their ability to inhibit in vitro growth of various fish, shrimp and human pathogens. Most of the LAB isolates displayed an improved antagonism against fish pathogens compared to shrimp and human pathogens. Selected representative strains displaying high antibacterial activity were identified using 16S rRNA gene sequence analysis. Of the selected strains Lactobacillus brevis was the most predominant. Four other species of Lactobacillus, Enterobacter hormaechei and Enterobacter ludwigii were also identified. It was also observed that even among same species, considerable diversity with respect to substrate utilization persisted. Considering the euryhaline nature of grey mullet (Mugil cephalus), the LAB isolated from the gut possessed good tolerance to varying salt concentrations. This finding merits further investigation to evaluate whether the isolated LAB could be used as probiotics in various fresh and sea water aquaculture

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biofilm forming multidrug resistant Staphylococcus spp. are major reservoirs for transmission of ophthalmic infections. They were isolated from ocular patients suffering from conjunctivitis. In this study we analyzed biofilm forming ability, antibiotic resistance profile of the Staphylococcus spp. isolated from clinical ocular patients, and their phylogenetic relationship with other community MRSA. Sixty Staphylococcus spp. strains isolated from clinical subjects were evaluated for their ability to form biofilm and express biofilm encoding ica gene. Among them 93% were slime producers and 87% were slime positive. Staphylococcus aureus and S. epidermidis were dominant strains among the isolates obtained from ocular patients. The strains also exhibited a differential biofilm formation quantitatively. Antibiotic susceptibility of the strains tested with Penicillin G, Ciprofloxacin, Ofloxacin, Methicillin, Amikacin, and Gentamicin indicated that they were resistant to more than one antibiotic. The amplicon of ica gene of strong biofilm producing S. aureus strains, obtained by polymerase chain reaction, was sequenced and their close genetic relationship with community acquired MRSA was analyzed based on phylogenetic tree. Our results indicate that they are genetically close to other community acquired MRSA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary habitat of Salmonella is the gastrointestinal tract of animals and they are discharged into the water bodies through the feces. Aquatic animals act as asymptomatic reservoirs of a wide range of Salmonella serotypes. The inevitable delay in the detection of Salmonella contamination and the low sensitivity of the conventional methods is a serious issue in the seafood industry. Due to the indiscriminate use, the antibiotics are finally accumulated in the aquatic environment which provides the required antibiotic stress for the emergence of more and more antibiotic resistant phenotypes ofSalmonella. Several genetic determinants like integrons, genomic islands etc. play their role in acquisition and reshuffling of antibiotic resistance genes. A large number of virulence determinants are required for Salmonella pathogenicity. The virulence potential of Salmonella is determined, to some extent, by the presence of phages or phage mediated genes in the bacterial genome. There is much intra-serotype polymorphism in Salmonella and epidemiological studies rely on genetic resemblance of the isolated strains. Proper identification of the strain employing the traditional and molecular techniques is a prerequisite for accurate epidemiological studies (Soto et al., 2000). In this context, a study was undertaken to determine the prevalence of different Salmonella serotypes in seafood and to characterize them

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study diversity of E. coli in the water samples of Cochin estuary were studied for a period of 3 years ranging from January 2010- December 2012. The stations were selected based on the closeness to satellite townships and waste input. Two of the stations (Chitoor and Thevara) were fixed upstream, two in the central part of the estuary namely Bolgatty and Off Marine Science Jetty, and one at the Barmouth. Diversity was assessed in terms of serotypes, phylogenetic groups and genotypes. Two groups of seafood samples such as fish and shellfish collected from the Cochin estuary were used for isolation of E. coli. One hundred clinical E. coli isolates were collected from one public health centre, one hospital and five medical labs in and around Cochin City, Kerala. From our results it was clear that pathogen cycling is occurring through food, water and clinical sources. Pathogen cycling through food is very common and fish and shellfish that harbour these strains might pose potential health risk to consumer. Estuarine environment is a melting pot for various kinds of wastes, both organic and inorganic. Mixing up of waste water from various sources such as domestic, industries, hospitals and sewage released into these water bodies resulting in the co-existence of E. coli from various sources thus offering a conducive environment for horizontal gene transfer. Opportunistic pathogens might acquire genes for drug resistance and virulence turning them to potential pathogens. Prevalence of ExPEC in the Cochin estuary, pose threat to people who use this water for fishing and recreation. Food chain also plays an important role in the transit of virulence genes from the environments to the human. Antibiotic resistant E. coli are widespread in estuarine water, seafood and clinical samples, for reasons well known such as indiscriminate use of antibiotics in animal production systems, aquaculture and human medicine. Since the waste water from these sources entering the estuary provides selection pressure to drug resistant mutants in the environment. It is high time that the authorities concerned should put systems in place for monitoring and enforcement to curb such activities. Microbial contamination can limit people’s enjoyment of coastal waters for contact recreation or shellfish-gathering. E. coli can make people sick if they are present in high levels in water used for contact recreation or shellfish gathering. When feeding, shellfish can filter large volumes of seawater, so any microorganisms present in the water become accumulated and concentrated in the shellfish flesh. If E. coli contaminated shellfish are consumed the impact to human health includes gastroenteritis, urinary tract infections (UTIs), and bacteraemia. In conclusion, the high prevalence of various pathogenic serotypes and phylogenetic groups, multidrug-resistance, and virulence factor genes detected among E. coli isolates from stations close to Cochin city is a matter of concern, since there is a large reservoir of antibiotic resistance genes and virulence traits within the community, and that the resistance genes and plasmid-encoded genes for virulence were easily transferable to other strains. Given the severity of the clinical manifestations of the disease in humans and the inability and/or the potential risks of antibiotic administration for treatment, it appears that the most direct and effective measure towards prevention of STEC and ExPEC infections in humans and ensuring public health may be considered as a priority.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.