20 resultados para Metal-insulator (MI) phase transition
Resumo:
In the present thesis a series of exhaustive investigations have been carried out on a number of crystalline samples with special reference tx> the jphase transitions exhibited by them. These include single crystals of pure, doped or deuterated specimens of certain ammonium containing crystals viz., (NH )34H(SO4)2, (NH4)2HPO4, (NH4)2Cr2O7 znui NH4H2PO4. ac/dc electrical conductivity, dielectric constant, ionic thermocurrent as wwifil as photoacoustic measurements have been carried out on most of them over a wide range of temperature. In addition investigations have been carried out in pure and doped single crystals of NaClO3 and NaNO3 using ionic thermocurrent measurements and these are presented here. Special attention has been paid to reveal the mechanism of electrical conduction in various phases of "these crystals and to evaluate the different parameters involved in the conduction as well as phase transition process. The thesis contains ten chapters ‘
Resumo:
In this Letter a new physical model for metal-insulatormetal CMOS capacitors is presented. In the model the parameters of the circuit are derived from the physical structural details. Physical behaviors due to metal skin effect and inductance have been considered. The model has been confirmed by 3D EM simulator and design rules proposed. The model presented is scalable with capacitor geometry, allowing designers to predict and optimize quality factor. The approach has been verified for MIM CMOS capacitors
Resumo:
Microwave dielectric ceramics based on GdTiNb,-,.Ta,O6 and Sml _.,Y,TiTa06 have been prepared by conventional solid state method . The GdTiTaO6 and SmTiTaO6 have aeschenite structure with positive rr and GdTiNbO6 and YTiTaO6 have euxenite structure with negative rr. The rr of the ceramics has been tuned by preparing solid solution phases between the aeschynites and euxenites for a possible zero rr material . It is observed that GdTiNbt_YTa.,O6 undergoes a phase transition from aeschynite to euxenite when x=0.75 and in Sml-,YxTiTa06 for x= 0.73. The microwave dielectric properties change abruptly near the transition region . The rr value approaches zero near the phase transition region while the samples have poor sinterability and poor quality factor . The unloaded quality factor, dielectric constant and the sign of rr of the solid solution phases are found to depend on the average ionic radius of the rare earth ion in RE ,-5RE',TiTaO6. The boundary of the euxenite-aeschynite phase transition occurs at an average ( RE) ionic radius of 0.915 A in Sm,_, Y,.TiTaO6 solid solution phases
Resumo:
The present thesis is centered around the study of electrical and thermal properties of certain selected photonic materials.We have studied the electrical conduction mechanism in various phases of certain selected photonic materials and those associated with different phase transitions occurring in them. A phase transition leaves its own impressions on the key parameters like electrical conductivity and dielectric constant. However, the activation energy calculation reveals the dominant factor responsible for conduction process.PA measurements of thermal diffusivity in certain other important photonic materials are included in the remaining part of the research work presented in this thesis. PA technique is a promising tool for studying thermal diffusivities of solid samples in any form. Because of its crucial role and common occurrence in heat flow problems, the thermal diffusivity determination is often necessary and knowledge of thermal diffusivity can intum be used to calculate the thermal conductivity. Especially,knowledge of the thermal diffusivity of semiconductors is important due to its relation to the power dissipation problem in microelectronic and optoelectronic devices which limits their performances. More than that, the thermal properties, especially those of thin films are of growing interest in microelectronics and microsystems because of the heat removal problem involved in highly integrated devices. The prescribed chapter of the present theis demonstrates how direct measurement of thermal diffusivity can be carried out in thin films of interest in a simple and elegant manner using PA techniques. Although results of only representative measurements viz; thermal diffusivity values in Indium, Aluminium, Silver and CdS thin films are given here, evaluation of this quantity for any photonic and / electronic material can be carried out using this technique in a very simple and straight forward manner.