25 resultados para Medical Image Processing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sonar signal processing comprises of a large number of signal processing algorithms for implementing functions such as Target Detection, Localisation, Classification, Tracking and Parameter estimation. Current implementations of these functions rely on conventional techniques largely based on Fourier Techniques, primarily meant for stationary signals. Interestingly enough, the signals received by the sonar sensors are often non-stationary and hence processing methods capable of handling the non-stationarity will definitely fare better than Fourier transform based methods.Time-frequency methods(TFMs) are known as one of the best DSP tools for nonstationary signal processing, with which one can analyze signals in time and frequency domains simultaneously. But, other than STFT, TFMs have been largely limited to academic research because of the complexity of the algorithms and the limitations of computing power. With the availability of fast processors, many applications of TFMs have been reported in the fields of speech and image processing and biomedical applications, but not many in sonar processing. A structured effort, to fill these lacunae by exploring the potential of TFMs in sonar applications, is the net outcome of this thesis. To this end, four TFMs have been explored in detail viz. Wavelet Transform, Fractional Fourier Transfonn, Wigner Ville Distribution and Ambiguity Function and their potential in implementing five major sonar functions has been demonstrated with very promising results. What has been conclusively brought out in this thesis, is that there is no "one best TFM" for all applications, but there is "one best TFM" for each application. Accordingly, the TFM has to be adapted and tailored in many ways in order to develop specific algorithms for each of the applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fourier transform methods are employed heavily in digital signal processing. Discrete Fourier Transform (DFT) is among the most commonly used digital signal transforms. The exponential kernel of the DFT has the properties of symmetry and periodicity. Fast Fourier Transform (FFT) methods for fast DFT computation exploit these kernel properties in different ways. In this thesis, an approach of grouping data on the basis of the corresponding phase of the exponential kernel of the DFT is exploited to introduce a new digital signal transform, named the M-dimensional Real Transform (MRT), for l-D and 2-D signals. The new transform is developed using number theoretic principles as regards its specific features. A few properties of the transform are explored, and an inverse transform presented. A fundamental assumption is that the size of the input signal be even. The transform computation involves only real additions. The MRT is an integer-to-integer transform. There are two kinds of redundancy, complete redundancy & derived redundancy, in MRT. Redundancy is analyzed and removed to arrive at a more compact version called the Unique MRT (UMRT). l-D UMRT is a non-expansive transform for all signal sizes, while the 2-D UMRT is non-expansive for signal sizes that are powers of 2. The 2-D UMRT is applied in image processing applications like image compression and orientation analysis. The MRT & UMRT, being general transforms, will find potential applications in various fields of signal and image processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

After skin cancer, breast cancer accounts for the second greatest number of cancer diagnoses in women. Currently the etiologies of breast cancer are unknown, and there is no generally accepted therapy for preventing it. Therefore, the best way to improve the prognosis for breast cancer is early detection and treatment. Computer aided detection systems (CAD) for detecting masses or micro-calcifications in mammograms have already been used and proven to be a potentially powerful tool , so the radiologists are attracted by the effectiveness of clinical application of CAD systems. Fractal geometry is well suited for describing the complex physiological structures that defy the traditional Euclidean geometry, which is based on smooth shapes. The major contribution of this research include the development of • A new fractal feature to accurately classify mammograms into normal and normal (i)With masses (benign or malignant) (ii) with microcalcifications (benign or malignant) • A novel fast fractal modeling method to identify the presence of microcalcifications by fractal modeling of mammograms and then subtracting the modeled image from the original mammogram. The performances of these methods were evaluated using different standard statistical analysis methods. The results obtained indicate that the developed methods are highly beneficial for assisting radiologists in making diagnostic decisions. The mammograms for the study were obtained from the two online databases namely, MIAS (Mammographic Image Analysis Society) and DDSM (Digital Database for Screening Mammography.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work deals with the A study of morphological opertors with applications. Morphology is now a.necessary tool for engineers involved with imaging applications. Morphological operations have been viewed as filters the properties of which have been well studied (Heijmans, 1994). Another well-known class of non-linear filters is the class of rank order filters (Pitas and Venetsanopoulos, 1990). Soft morphological filters are a combination of morphological and weighted rank order filters (Koskinen, et al., 1991, Kuosmanen and Astola, 1995). They have been introduced to improve the behaviour of traditional morphological filters in noisy environments. The idea was to slightly relax the typical morphological definitions in such a way that a degree of robustness is achieved, while most of the desirable properties of typical morphological operations are maintained. Soft morphological filters are less sensitive to additive noise and to small variations in object shape than typical morphological filters. They can remove positive and negative impulse noise, preserving at the same time small details in images. Currently, Mathematical Morphology allows processing images to enhance fuzzy areas, segment objects, detect edges and analyze structures. The techniques developed for binary images are a major step forward in the application of this theory to gray level images. One of these techniques is based on fuzzy logic and on the theory of fuzzy sets.Fuzzy sets have proved to be strongly advantageous when representing in accuracies, not only regarding the spatial localization of objects in an image but also the membership of a certain pixel to a given class. Such inaccuracies are inherent to real images either because of the presence of indefinite limits between the structures or objects to be segmented within the image due to noisy acquisitions or directly because they are inherent to the image formation methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Median filtering is a simple digital non—linear signal smoothing operation in which median of the samples in a sliding window replaces the sample at the middle of the window. The resulting filtered sequence tends to follow polynomial trends in the original sample sequence. Median filter preserves signal edges while filtering out impulses. Due to this property, median filtering is finding applications in many areas of image and speech processing. Though median filtering is simple to realise digitally, its properties are not easily analysed with standard analysis techniques,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Handwriting is an acquired tool used for communication of one's observations or feelings. Factors that inuence a person's handwriting not only dependent on the individual's bio-mechanical constraints, handwriting education received, writing instrument, type of paper, background, but also factors like stress, motivation and the purpose of the handwriting. Despite the high variation in a person's handwriting, recent results from different writer identification studies have shown that it possesses sufficient individual traits to be used as an identification method. Handwriting as a behavioral biometric has had the interest of researchers for a long time. But recently it has been enjoying new interest due to an increased need and effort to deal with problems ranging from white-collar crime to terrorist threats. The identification of the writer based on a piece of handwriting is a challenging task for pattern recognition. The main objective of this thesis is to develop a text independent writer identification system for Malayalam Handwriting. The study also extends to developing a framework for online character recognition of Grantha script and Malayalam characters

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Handwritten character recognition is always a frontier area of research in the field of pattern recognition and image processing and there is a large demand for OCR on hand written documents. Even though, sufficient studies have performed in foreign scripts like Chinese, Japanese and Arabic characters, only a very few work can be traced for handwritten character recognition of Indian scripts especially for the South Indian scripts. This paper provides an overview of offline handwritten character recognition in South Indian Scripts, namely Malayalam, Tamil, Kannada and Telungu

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optical Character Recognition plays an important role in Digital Image Processing and Pattern Recognition. Even though ambient study had been performed on foreign languages like Chinese and Japanese, effort on Indian script is still immature. OCR in Malayalam language is more complex as it is enriched with largest number of characters among all Indian languages. The challenge of recognition of characters is even high in handwritten domain, due to the varying writing style of each individual. In this paper we propose a system for recognition of offline handwritten Malayalam vowels. The proposed method uses Chain code and Image Centroid for the purpose of extracting features and a two layer feed forward network with scaled conjugate gradient for classification

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characterization and grading of glioma tumors, via image derived features, for diagnosis, prognosis, and treatment response has been an active research area in medical image computing. This paper presents a novel method for automatic detection and classification of glioma from conventional T2 weighted MR images. Automatic detection of the tumor was established using newly developed method called Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA).Statistical Features were extracted from the detected tumor texture using first order statistics and gray level co-occurrence matrix (GLCM) based second order statistical methods. Statistical significance of the features was determined by t-test and its corresponding p-value. A decision system was developed for the grade detection of glioma using these selected features and its p-value. The detection performance of the decision system was validated using the receiver operating characteristic (ROC) curve. The diagnosis and grading of glioma using this non-invasive method can contribute promising results in medical image computing