30 resultados para Massachusetts. Dept. of Conservation. Division of Fisheries and Game.
Resumo:
Soil moisture plays a cardinal role in sustaining eclological balance and agricultural development – virtually the very existence of life on earth. Because of the growing shortage of water resources, we have to use the available water most efficiently by proper management. Better utilization of rainfall or irrigation management depends largely on the water retention characteristics of the soil.Soil water retention is essential to life and it provides an ongoing supply of water to plants between periods of irrigation so as to allow their continued growth and survival.It is essential to maintain readily available water in the soil if crops are to sustain satisfactory growth. The plant growth may be retarded if the soil moisture is either deficient or excessive. The optimum moisture content is that moisture which leads to optimum growth of plant. When watering is done, the amount of water supplied should be such that the water content is equal to the field capacity that is the water remained in the saturated soil after gravitational drainage. Water will gradually be utilized consumptively by plants after the water application, and the soil moisture will start falling. When the water content in the soil reaches the value known as permanent wilting point (when the plant starts wilting) fresh dose of irrigation may be done so that water content is again raised to the field capacity of soil.Soil differ themselves in some or all the properties depending on the difference in the geotechnical and environmental factors. Soils serve as a reservoir of the nutrients and water required for crops.Study of soil and its water holding capacity is essential for the efficient utilization of irrigation water. Hence the identification of the geotechnical parameters which influence the water retention capacity, chemical properties which influence the nutrients and the method to improve these properties have vital importance in irrigation / agricultural engineering. An attempt in this direction has been made in this study by conducting the required tests on different types of soil samples collected from various locations in Trivandrum district Kerala, with and without admixtures like coir pith, coir pith compost and vermi compost. Evaluation of the results are presented and a design procedure has been proposed for a better irrigation scheduling and management.
Resumo:
Brasses are widely used as constructional materials in marine environment due to their anticorrosive,antifouling and mechanical properties.However, its resistance to corrosion and fouling may vary according to local marine environmental condition and the seasons.The dezincification of brass is one of the forms of selective corrosion which has attracted the attention of researchers for the last two decades.Many of the dezincification mechanistic studies have been performed in noncomplex media and hence their conclusions cannot be extended to esturine water,which is of great significance since brass is extensively used in marine environment.Inhibited α brasses are largely immune to dezincication and the effect of tin and arsenic addition to α/beta brasses is not so reliable in controlling the dezincification. There have been many cases of dezincification in duplex brasses in both freshwater and seawater.Though there is some protection methods such as inhibitors,electro deposition and electro polymerization,there is no reliable method of inhibiting the dezincification of two-phase brass.Organic coatings are effectively used for the protection metals due to their capacity to act a physical barrieer between the metal surface and corrosive environment.Hence,pure epoxy coating is selected for this as it has antocorrosiion effect on brass.The dezincification behaviour of brass of the present study has been highlighted in terms of corrosion rate,weight gain/loss,corrosion current and polarization resistence,open circuit potential,dezincification factor. The marine fouling as biomass on brass was assessed and presented in this thesis, The physicochemical properties of estuarine water were correlated with corrosion behaviour of brass.The deterioration of the brass subjected to the effect of estuarine water was also investigated as a measure of loss in mechanical properties such as tensile strength,yield strength,percntage elongation and percentage reduction in area.To validate dezincification data,visual observation,spot analysis,surface morphology before and after removal of corrosion products and corrosion product analysis were performed.The dezincification behavior of epoxy coated brass of the present study has beenhighlighted in terms of corrosion rate ,weight gain/loss,corrosion current and polarization resistance,open circuit potential.dezincification factor.The marine fouling as biomass on epoxy coated brass subjeted to the effect of estuarine water was also investigated as ameasure of loss in mechanical properties such as tensile strength,percentage elongation and percentage reduction in area.The results of dezincification behavior of brass and epoxy coated brass in Cochin estuary water has been presented and discussed.Attempt has been made to correlate the dezincification behavior of brass with epoxy coated brass.
Resumo:
The present study is aimed at the isolation and characterization of glycosaminoglycans from selected tissues of two commercially important species of cephalopods;squid,Loligo duvauceli and cuttlefish,Sepia pharaonis,keeping in view of the aforementioned benefits on the utilization of waste generated during processing.The cephalopod GAGs may also be expected to have an effect on various physiological functions based on the results obtained from GAGs from other sources.In addition,knowledge of the chemical structure of macromolecules that constitute major components of extracellular matrix(ECM) will be helpful in understanding their interactions with other matrix components.
Resumo:
Shrimp Aquaculture has provided tremendous opportunity for the economic and social upliftment of rural communities in the coastal areas of our country Over a hundred thousand farmers, of whom about 90% belong to the small and marginal category, are engaged in shrimp farming. Penaeus monodon is the most predominant cultured species in India which is mainly exported to highly sophisticated, quality and safety conscious world markets. Food safety has been of concem to humankind since the dawn of history and the concern about food safety resulted in the evolution of a cost effective, food safety assurance method, the Hazard Analysis Critical Control Point (HACCP). Considering the major contribution of cultured Penaeus monodon to the total shrimp production and the economic losses encountered due to disease outbreak and also because traditional methods of quality control and end point inspection cannot guarantee the safety of our cultured seafood products, it is essential that science based preventive approaches like HACCP and Pre requisite Programmes (PRP) be implemented in our shrimp farming operations. PRP is considered as a support system which provides a solid foundation for HACCP. The safety of postlarvae (PL) supplied for brackish water shrimp farming has also become an issue of concern over the past few years. The quality and safety of hatchery produced seeds have been deteriorating and disease outbreaks have become very common in hatcheries. It is in this context that the necessity for following strict quarantine measures with standards and code of practices becomes significant. Though there were a lot of hue and cry on the need for extending the focus of seafood safety assurance from processing and exporting to the pre-harvest and hatchery rearing phases, an experimental move in this direction has been rare or nil. An integrated management system only can assure the effective control of the quality, hygiene and safety related issues. This study therefore aims at designing a safety and quality management system model for implementation in shrimp farming and hatchery operations by linking the concepts of HACCP and PRP.
Resumo:
Among the large number of photothcrmal techniques available, photoacoustics assumes a very significant place because of its essential simplicity and the variety of applications it finds in science and technology. The photoacoustic (PA) effect is the generation of an acoustic signal when a sample, kept inside an enclosed volume, is irradiated by an intensity modulated beam of radiation. The radiation absorbed by the sample is converted into thermal waves by nonradiative de-excitation processes. The propagating thermal waves cause a corresponding expansion and contraction of the gas medium surrounding the sample, which in tum can be detected as sound waves by a sensitive microphone. These sound waves have the same frequency as the initial modulation frequency of light. Lock-in detection method enables one to have a sufficiently high signal to noise ratio for the detected signal. The PA signal amplitude depends on the optical absorption coefficient of the sample and its thermal properties. The PA signal phase is a function of the thermal diffusivity of the sample.Measurement of the PA amplitude and phase enables one to get valuable information about the thermal and optical properties of the sample. Since the PA signal depends on the optical and thennal properties of the sample, their variation will get reflected in the PA signal. Therefore, if the PA signal is collected from various points on a sample surface it will give a profile of the variations in the optical/thennal properties across the sample surface. Since the optical and thermal properties are affected by the presence of defects, interfaces, change of material etc. these will get reflected in the PA signal. By varying the modulation frequency, we can get information about the subsurface features also. This is the basic principle of PA imaging or PA depth profiling. It is a quickly expanding field with potential applications in thin film technology, chemical engineering, biology, medical diagnosis etc. Since it is a non-destructive method, PA imaging has added advantages over some of the other imaging techniques. A major part of the work presented in this thesis is concemed with the development of a PA imaging setup that can be used to detect the presence of surface and subsmface defects in solid samples.Determination of thermal transport properties such as thermal diffusivity, effusivity, conductivity and heat capacity of materials is another application of photothennal effect. There are various methods, depending on the nature of the sample, to determine these properties. However, there are only a few methods developed to determine all these properties simultaneously. Even though a few techniques to determine the above thermal properties individually for a coating can be found in literature, no technique is available for the simultaneous measurement of these parameters for a coating. We have developed a scanning photoacoustic technique that can be used to determine all the above thermal transport properties simultaneously in the case of opaque coatings such as paints. Another work that we have presented in this thesis is the determination of thermal effusivity of many bulk solids by a scanning photoacoustic technique. This is one of the very few methods developed to determine thermal effiisivity directly.
Resumo:
This thesis Entitled Electrical switching studies on the thin flims of polyfuran and polyacrylonitrile prepared by plasma polymerisation and vacuum evaporated amorphous silicon.A general introduction to the switching and allied phenomena is presented. Subsequently, developments of switching in thin films are described. The Mott transition is qualitatively presented. The working of a switching transitor is outlined and compared to the switching observed in thin films. Characteristic parameters of switching such as threshold voltage, time response to a, voltage pulse, and delay time are described. The various switching configurations commonly used are discussed. The mechanisms used to explain the switching behaviour like thermal, electrothermal and purely electronic are reviewed. Finally the scope, feasibility and the importance of polymer thin films in switching are highlighted.
Resumo:
Impact of teak and eucalypt monoculture on soils in the highlands of kerala .The thesis is arranged under nine chapters. The first chapter introduces the topic, reviews the literature pertaining to the study and presents the aims and objectives of the study. The second chapter briefly describes the study location. experimental design and sampling methodology. The third chapter deals with physical properties of plantation soils. The fourth and fifth chapters cover the chemical properties and macro- and micro nutrient status in plantation soils. The organic matter fractions in plantation soils are described in sixth chapter. First part of the seventh chapter presents the results of factor analysis and the second part deals with fertility index of plantations. All these chapters are self-contained with separate introduction, materials and methods and results and discussions. A general discussion of the results is included in the eighth chapter. The ninth chapter includes conclusions and summary A study that traces the variation in physical and chemical properties and nutrient status of teak soils with age of plantations, till the end of a rotation period is thus highly pertinent. Such a study, with an adjacent natural forest as a reference stand will not only generate information that will help us to understand the pattern of variation in soil properties, but will also aid us in formulating better management strategies. The data generated by such a study will be more useful if accompanied by information on soil changes following a short rotation plantation crop. As Eucalypt, a short rotation crop is the second major plantation crop in Kerala, it was chosen for the study.
Resumo:
In recent years, pollution in general and sea water pollution in particular, has become an important topic for national and international considerations. Because of its impact on society, marine pollution has attracted great attention from politicians, administrators, natural scientists and technologists all over the world. To save our environment from further deterioration, it is essential to have an assessment of this problem This thesis involves investigation of the lethal and sub lethal effects of four pesticides and two petroleum oil, individually and in combinations on two commercially important bivalves. Among the four pesticides used two are organophosphates and the other two are organochlorines. Synthetic Pesticides, especially organophosphates and organochlorines have become increasingly important additions to chemical wastes polluting natural aquatic Communities special attention is given in the present investigation to delineate the combined toxic effect of oil and pesticides. The results are presented under different sections to make the presentation meaningful.
Resumo:
The thesis is a study undertaken to understand the distribution pattern of Q nega in Cochin waters for better exploitation of the resource and to learn the biological aspects of the animal which has a direct bearing on its utilization for producing different products .The study also presents a thorough knowledge on the size groups available during different seasons for judicious exploitation and utilization of the resource and the changes in the biochemical composition of Q nega during different seasons so as to utilize it properly for producing suitable products throughout the year. The thesis also tests the suitability of the material for producing different products and to test the acceptability of the same for human consumption. The study also aims to show that Squilla can be utilized for the production of industrial products like chitin and chitosan.
Resumo:
The importance of marine algae, often referred to as seaweeds, has been felt over a long time and is appreciated more and more in modern times. The economic value of marine algae is understood both indirectly and directly. The indirect benefit is due to the role of marine phytoplankton as well as the benthic macrophyte biomass along the shore and in the continental shelf, in primary production of the sea. Direct benefit includes the use of marine algae as food, feed, fertilizer and as source of various products of commercial importance such as agar and alginic acid. Hence to understand the potential resources of seaweeds, their distribution, density, standing crop and interrelated environmental parameters, a detailed study (survey and ecological work) was carried out for a period of 20 months from August 1988 to March 1990 in South Andaman, North Andaman, Middle Andaman, Havelock, Neil, Car Nicobar, Terassa, Chowra and Bumpoka islands. However in South Andaman, data were collected from five fixed stations fortnightly during this period for the purpose of modelling and system analysis.
Resumo:
Teak plantations were initiated in Kerala in 1842, and extended almost continuously. Among plantations raised by the Forest Department, teak occupies the largest area and a substantial asset base has been created. Of late, several teak growing private companies have come up offering investors high returns from their plantations. However, no study has been carried out in Kerala on the economic status of teak plantations in the government forests and prospects of investing in teak plantation ventures in the private sector. The present study is relevant in presenting the productivity status of teak plantations in government forests in Kerala and its commercial profitability. This will be useful to the government for planning management strategies and investment priorities. The study will also serve as a base—line information for comparative studies.
Resumo:
Bamboos are vulnerable to various diseases which affect them in nurseries, plantations as well as in natural stands. In India, rot and blight of emerging culms have already been identified as the limiting factor of the bamboo production in many bamboo growing areas, especially in the coastal belts of Orissa (Jamaluddin et a1., 1992). Similarly, foliage blight and rust have been recorded to pose threat to nursery as well as outplanted seedlings which are in the early establishnent phase (Bakshi et a1., 1972; Harsh et a1., 1989). With the increased emphasis and priority on raising multipurpose tree species, large—scale planting of bamboos has been initiated recently in the State. Limited experience in raising the bamboo seedlings together with the lack of information on bamboo diseases and their control measures often resulted in partial to complete failure of many nurseries. Also, poor handling of bareroot seedlings for outplanting affected seriously the planting programme. This was clearly reflected by the large-scale nortality of outplanted young seedlings reported from many plantations. So far, no systanatic attempt has been made to study the diseases affecting bamboos in nurseries, plantations and natural stands in the country. Hence, the present investigation was taken up to conduct a systematic study of the diseases affecting bamboos in Kerala.
Resumo:
The present study deals with the different hydrogeological characteristics of the coastal region of central Kerala and a comparative analysis with corresponding hard rock terrain. The coastal regions lie in areas where the aquifer systems discharge groundwater ultimately into the sea. Groundwater development in such regions will require a precise understanding of the complex mechanism of the saline and fresh water relationship, so that the withdrawals are so regulated as to avoid situations leading to upcoming of the saline groundwater bodies as also to prevent migration of sea water ingress further inland. Coastal tracts of Kerala are formed by several drainage systems. Thick pile of semi-consolidated and consolidated sediments from Tertiary to Recent age underlies it. These sediments comprise phreatic and confined aquifer systems. The corresponding hard rock terrain is encountered with laterites and underlined by the Precambrian metamorphic rocks. Supply of water from hard rock terrain is rather limited. This may be due to the small pore size, low degree of interconnectivity and low extent of weathering of the country rocks. The groundwater storage is mostly controlled by the thickness and hydrological properties of the weathered zone and the aquifer geometry. The over exploitation of groundwater, beyond the ‘safe yield’ limit, cause undesirable effects like continuous reduction in groundwater levels, reduction in river flows, reduction in wetland surface, degradation of groundwater quality and many other environmental problems like drought, famine etc.