23 resultados para METHYLSTYRENE ACRYLONITRILE COPOLYMERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compounding of styrene-butadiene copolymer/polybutadiene , natural rubber/ ethylene-propylene-diene terpolymer and natural rubber/butadiene-acrylonitrile copolymer blends was done in three different ways and their curing behaviour and the tensile properties of the es are compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis deals with the development of short nylon fiber-reclaimed rubber/elastomer composites. Three rubbers viz, natural rubber, acrylonitrile butadiene rubber and styrene butadiene rubber were selected and were partially replaced with reclaimed rubber. The blend ratio was optimized with respect to cure characteristics and mechanical properties. Reclaimed rubber replaced 40 parts of NR and SBR and 20 parts of NBR without much affecting the properties. These blends were then reinforced with short nylon fibers. The mechanical properties of the composites were studied in detail. In all the cases the tensile strength, tear strength and the abrasion resistance increased with increase in fiber content. In the case of NRlreclaimed rubber blends, the tensile strength-fiberloading relationship was non-linear where as in the case of NBRlreclaimed rubber blends and SBRlreclaimed rubber blends the tensile strength-fiber loading relationship was linear. All the composites showed anisotropy in mechanical properties. The effect of bonding system on the composite properties was also studied with respect to cure characteristics and mechanical properties. For this, a 20 phr fiber loaded reclaimed rubber/elastomer composites were selected and the effect of MDI/PEG resin system was studied. The resin used was 5 phr and the resin ratios used were 0.67: I, 1:1, 1.5:1 and 2:1. The bonding system improved the tensile strength, tear strength and abrasion resistance. The best results are with SBRlreclaimed rubber-short nylon fiber composites. The optimized resin ratio was 1:1 MDI/PEG for all the composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis describes utilisation of reclaimed rubber, Whole Tyre Reclaim (WTR) produced from bio non- degradable solid pollutant scrap and used tyres. In this study an attempt has made to optimize the substitution of virgin rubber with WTR in both natural and synthetic rubber compounds without seriously compromising the important mechanical properties. The WTR is used as potent source of rubber hydrocarbon and carbon black filler. Apart from natural rubber (NR), Butadiene rubber (BR), Styrene butadiene rubber (SBR), Acrylonitrile butadiene rubber (NBR) and Chloroprene rubber (CR) were selected for study, being the most widely used general purpose and specialty rubbers. The compatibility problem was addressed by functionalisation of WTR with maleic anhydride and by using a coupling agent Si69.The blends were systematically evaluated with respect to various mechanical properties. The thermogravimetric analyses were also carried out to evaluate the thermal stability of the blends.Mechanical properties of the blends were property and matrix dependant. Presence of reinforcing carbon black filler and curatives in the reclaimed rubber improved the mechanical properties with the exception of some of the elastic properties like heat build up, resilience, compression set. When WTR was blended with natural rubber and synthetic rubbers, as the concentration of the low molecular weight, depolymerised WfR was increased above 46-weight percent, the properties deteriorates.When WTR was blended with crystallizing rubbers such as natural rubber and chloroprene rubber, properties like tensile strength, ultimate elongation were decreased in presence of WTR. Where as in the case of blends of WTR with non-crystallizing rubbers reinforcement effect was more prominent.The effect of functionalisation and coupling agent was studied in three matrices having different levels of polarity(NBR, CR and SBR).The grafting of maleic anhydride on to WTR definitely improved the properties of its blends with NBR, CR and SBR, the effect being prominent in Chloroprene rubber.Improvement in properties of these blends could also achieved by using a coupling agent Si69. With this there is apparent plasticizing effect at higher loading of the coupling agent. The optimum concentration of Si69 was 1 phr for improved properties, though the improvements are not as significant as in the case of maleic anhydride grafting.Thermal stability of the blend was increased by using silane-coupling agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis describes the development and evaluation of epoxy resin as interfacial bonding agent for short Nylon-6 fiber elastomer composites. Epoxy resin is well known for its adhesive property. The potential use of it as interfacial bonding agent in short fiber composite is not explored yet. Three rubbers viz., acrylonitrile butadiene rubber (NBR), Neoprene rubber (CR) and styrene butadiene rubber (SBR) were selected and different fiber loading were tried. The resin concentration was optimized for each fiber loading with respect to cure characteristics and mechanical properties. Rheological characteristics and thermal degradation of the composites containing different fiber loading and different resin concentrations were studied in detail to find the effect of epoxy resin bonding system. The mechanical properties were studied in detail. The short Nylon -6 fiber improved most of the mechanical properties of all the three rubbers. Tensile strength showed a dip at 10 phr fiber loading in the case of CR while it was continuously increased with fiber loading in the case of NBR and SBR. All the composites showed anisotropy in mechanical properties. The epoxy resin is an effective bonding agent for short Nylon -6 fiber reinforced NBR and CR composites. Epoxy resin improved tensile strength, abrasion resistance and modulus of these composites. SEM studies confirmed the improved bonding of fiber and matrix in the presence of epoxy bonding agent. Epoxy resin was not effective as bonding agent in the case of short Nylon fiber- SBR composite. From the rheological studies of the composites with and without bonding agent it was observed that all the composite exhibited pseudoplasticity, which decreased with temperature. At higher shear rates all the mixes showed plug flow. SEM pictures showed that maximum orientation of fibers occured at a shear rate, just before the onset of plug flow. The presence of fiber reduced the temperature sensitivity of the flow at a given shear rate. Die swell was reduced in the presence of fiber. Shear viscosity of the composite was increased in the presence of resin. Die swell was increased in the presence of epoxy resin for composites at all shear rates. The thermal degradation of NBR and SBR composites with and without bonding agent followed single step degradation pattern. Thermal stability of the composites was improved in the presence of bonding agent. The degradation of virgin elastomer and the composites followed first order kinetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims at the preparation of an ABS (acrylonitrile-butadiene-styrene) type toughened thermoplastic by melt blending polystyrene (PS) and powdered nitrile rubber (NBR). The product is an interesting class of toughened thermoplastic, which would combine the superior mechanical and processing characteristics of PS and the excellent oil-resistant properties of NBR. In this thesis an attempt has been made to investigate systematically the effect of compatibilisation and dynamic vulcanisation on the morphology and properties of powdered nitrile rubber toughened polystyrene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the first part of the study we probed the effectiveness of rice bran oil as a multipurpose compounding ingredient for nitrile (NBR) and chloroprene (CR) rubbers. This oil has already been successfully employed in the compounding of NR and SBR in this laboratory.In this context we thought it worthwhile to try this oil in the polar rubbers viz, NBR and CR also. The principle of like dissolves like as applicable to solvents is equally applicable while selecting a plasticiser, elastomer combination. Because of the compatibility considerations polar plasticisers are preferred for polar rubbers like NBR and CR. Although plasticisation is a physical phenomenon and no chemical reaction is involved, the chemical structure of plasticisers determines how much physical attraction there is between the rubber and the plasticiser. In this context it is interesting to note that the various fatty acids present in rice bran oil have a long paraffinic chain, characteristic of waxes, with an acid group at the end of the molecule. The paraffinic end of the molecule contributes lubricating effects and limits compatibility whereas the acid end group contributes some polarity and is also chemically reactive. Because of absorption of acid group on the surface of pigments, these acids will have active pigment wetting characteristics also. These factors justifies the role of rice bran oil as a co-activator and lubricating agent for NBR and CR. In fact in our study we successfully replaced stearic acid as co-activator and aromatic oillDOP as processing aid for CR and NBR with rice bran oil.This part of the study has got special significance in the fact that rubber industry now heavily depends on petroleum industry for process oils. The conventional process oils like aromatic, naphthenic and paraffinic oils are increasingly becoming costlier, as its resources in nature are fast depleting. Moreover aromatic process oils are reported to be carcinogenic because of the presence of higher levels of polycyclic aromatic compounds in these oils.As a result of these factors, a great amount research is going on world over for newer processing aids which are cost effective, nontoxic and performanance wise at par with the conventional ones used in the rubber industry. Trials with vegetable oils in this direction is worth trying.Antioxidants are usually added to the rubber compound to minimise ageing effects from heat, light, oxygen etc. As rice bran oil contains significant amount of tocopherols and oryzanol which are natural antioxidants, we replaced a phenolic antioxidant like styrenated phenol (SP) from the compound recipe of both the rubbers with RBO and ascertained whether this oil could function in the role of antioxidant as well.Preparation and use of epoxidised rice bran oil as plasticiser has already been reported.The crude rice bran oil having an iodine value of 92 was epoxidised in this laboratory using peracetic acid in presence of sulphuric acid as catalyst. The epoxy content of the epoxidised oil was determined volumetrically by treating a known weight of the oil with excess HCI and back titrating the residual HCI with standard alkali solution. The epoxidised oil having an epoxy content of 3.4% was tried in the compounding of NBR and CR as processing aids. And results of these investigations are also included in this chapter. In the second part of the study we tried how RBO/ERBO could perform when used as a processing aid in place of aromatic oil in the compounding of black filled NRCR blends. Elastomers cannot have all the properties required for a particular applications, so it is common practice in rubber industry to blend two elastomers to have desired property for the resulting blend.In this RBO/ERBO was tried as a processing aid for plasticisation, dispersion of fillers, and vulcanisation of black filled NR-CR blends.Aromatic oil was used as a control. The results of our study indicate that these oils could function as a processing aid and when added together with carbon black function as a cure accelerator also.PVC is compatible with nitrile rubber in all proportions, provided NBR has an acrylonitrile content of 25 to 40%. Lower or higher ACN content in NBR makes it incompatible with PVC.PVC is usually blended with NBR at high temperatures. In order to reduce torque during mixing, additional amounts of plasticisers like DOP are added. The plasticiser should be compatible both with PVC and NBR so as to get a homogeneous blend. Epoxidised soyaben oil is reported to have been used in the compounding of PVC as it can perfonn both as an efficient plasticiser and heat stabilizer.At present DOP constitute the largest consumed plasticiser in the PVC compounding. The migration of this plasticiser from food packaging materials made of PVC poses great health hazards as this is harmful to human body. In such a scenario we also thought it worthwhile to see whether DOP could be replaced by rice bran oil in the compounding of NBR-PVC blends Different blends of NBR-PVC were prepared with RBO and were vulcanized using sulphur and conventional accelerators. The various physical and mechanical properties of the vulcanisates were evaluated and compared with those prepared with DOP as the control plasticiser. Epoxidised rice bran oil was also tried as plasticiser for the preparation of NBR-PVC blends. A comparison of the processability and cure characteristics of the different blends prepared with DOP and ERBO showed that ERBO based blends have better processability and lower cure time values. However the elastographic maximum torque values are higher for the DOP based blends. Almost all of the physical properties evaluated are found to be slightly better for the DOP based blends over the ERBO based ones. However a notable feature of the ERBO based blends is the better percentage retention of elongation at break values after ageing over the DOP based blends. The results of these studies using rice bran oil and its epoxidised variety indicated that they could be used as efficient plasticisers in place of DOP and justifies their role as novel, nontoxic, and cheap plasticisers for NBR-PVC blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this introduction part, importance has been given to the elastomeric properties of polyurethanes. Emphasis has been laid to this property based on microphase separation and how this could be modified by modifying the segment lengths, as well as the structure of the segments. Implication was also made on the mechanical and thermal properties of these copolymers based on various analytical methods usually used for characterization of polymers. A brief overview of the challenges faced by the polyurethane chemistry was also done, pointing to the fact that though polyurethane industry is more than 75 years old, still a lot of questions remain unanswered, that too mostly in the synthesis of polyurethanes. A major challenge in this industry is the utilization of more environmental friendly “Green Chemistry Routes” for the synthesis of polyurethanes which are devoid of any isocyanates or harsh solvents.The research work in this thesis was focused to develop non-isocyanate green chemical process for polyurethanes and also self-organize the resultant novel polymers into nano-materials. The thesis was focused on the following three major aspects:(i) Design and development of novel melt transurethane process for polyurethanes under non-isocyanate and solvent free melt condition. (ii) Solvent induced self-organization of the novel cycloaliphatic polyurethanes prepared by the melt transurethane process into microporous templates and nano-sized polymeric hexagons and spheres. (iii) Novel polyurethane-oligophenylenevinylene random block copolymer nano-materials and their photoluminescence properties. The second chapter of the thesis gives an elaborate discussion on the “Novel Melt Transurethane Process ” for the synthesis of polyurethanes under non-isocyanate and solvent free melt condition. The polycondensation reaction was carried out between equimolar amounts of a di-urethane monomer and a diol in the presence of a catalyst under melt condition to produce polyurethanes followed by the removal of low boiling alcohol from equilibrium. The polymers synthesized through this green chemical route were found to be soluble (devoid of any cross links), thermally stable and free from any isocyanate entities. The polymerization reaction was confirmed by various analytical techniques with specific references to the extent of reaction which is the main watchful point for any successful polymerization reaction. The mechanistic aspects of the reaction were another point of consideration for the novel polymerization route which was successfully dealt with by performing various model reactions. Since this route was successful enough in synthesizing polyurethanes with novel structures, they were employed for the solvent induced self-organization which is an important area of research in the polymer world in the present scenario. Chapter three mesmerizes the reader with multitudes of morphologies depending upon the chemical backbone structure of the polyurethane as well as on the nature and amount of various solvents employed for the self-organization tactics. The rationale towards these morphologies-“Hydrogen Bonding ” have been systematically probed by various techniques. These polyurethanes were then tagged with luminescent 0ligo(phenylene vinylene) units and the effects of these OPV blocks on the morphology of the polyurethanes were analyzed in chapter four. These blocks have resulted in the formation of novel “Blue Luminescent Balls” which could find various applications in optoelectronic devices as well as delivery vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light emitting polymers (LEP) have drawn considerable attention because of their numerous potential applications in the field of optoelectronic devices. Till date, a large number of organic molecules and polymers have been designed and devices fabricated based on these materials. Optoelectronic devices like polymer light emitting diodes (PLED) have attracted wide-spread research attention owing to their superior properties like flexibility, lower operational power, colour tunability and possibility of obtaining large area coatings. PLEDs can be utilized for the fabrication of flat panel displays and as replacements for incandescent lamps. The internal efficiency of the LEDs mainly depends on the electroluminescent efficiency of the emissive polymer such as quantum efficiency, luminance-voltage profile of LED and the balanced injection of electrons and holes. Poly (p-phenylenevinylene) (PPV) and regio-regular polythiophenes are interesting electro-active polymers which exhibit good electrical conductivity, electroluminescent activity and high film-forming properties. A combination of Red, Green and Blue emitting polymers is necessary for the generation of white light which can replace the high energy consuming incandescent lamps. Most of these polymers show very low solubility, stability and poor mechanical properties. Many of these light emitting polymers are based on conjugated extended chains of alternating phenyl and vinyl units. The intra-chain or inter-chain interactions within these polymer chains can change the emitted colour. Therefore an effective way of synthesizing polymers with reduced π-stacking, high solubility, high thermal stability and high light-emitting efficiency is still a challenge for chemists. New copolymers have to be effectively designed so as to solve these issues. Hence, in the present work, the suitability of a few novel copolymers with very high thermal stability, excellent solubility, intense light emission (blue, cyan and green) and high glass transition temperatures have been investigated to be used as emissive layers for polymer light emitting diodes.