18 resultados para Immobilized enzyme activity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An alkaline protease from marine Engyodontium album was characterized for its physicochemical properties towards evaluation of its suitability for potential industrial applications. Molecular mass of the enzyme by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) analysis was calculated as 28.6 kDa. Isoelectric focusing yielded pI of 3–4. Enzyme inhibition by phenylmethylsulfonyl fluoride (PMSF) and aprotinin confirmed the serine protease nature of the enzyme.Km, Vmax, and Kcat of the enzyme were 4.727 9 10-2 mg/ml, 394.68 U, and 4.2175 9 10-2 s-1, respectively. Enzyme was noted to be active over a broad range of pH (6–12) and temperature (15–65 C), withmaximumactivity at pH 11 and 60 C. CaCl2 (1 mM), starch (1%), and sucrose (1%) imparted thermal stability at 65 C. Hg2?, Cu2?, Fe3?, Zn2?, Cd?, and Al3? inhibited enzyme activity, while 1 mMCo2? enhanced enzyme activity. Reducing agents enhanced enzyme activity at lower concentrations. The enzyme showed considerable storage stability, and retained its activity in the presence of hydrocarbons, natural oils, surfactants, and most of the organic solvents tested. Results indicate that the marine protease holds potential for use in the detergent industry and for varied applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The major digestive enzyme activities and digestive indices were compared between Etroplus suratensis and Oreochromis mossambicus. Pepsin - like acid proteases that acts on low pH has been identified all along the digestive tract of both the fishes. Comparatively low alpha amylase activity is shown by the E. suratensis and the enzyme is distributed almost equally throughout the intestinal segments in both the species. Very low alkaline protease activity is found in the stomach of both the fishes and in O. mossambicus, the enzyme activity diminishes extensively towards the posterior portion of the intestine whereas in E. suratensis the activity increases towards the posterior part. The present study showed that lipase is one of the prominent digestive enzymes in O. mossambicus with a remarkable specific activity throughout the digestive tract than that of E. suratensis .It has been noted that O. mossambicus has a higher values for digestive somatic index, hepato somatic index, intestinal coefficient and gut Vs standard length ratio than that of E. suratensis indicating its higher digestive and metabolic capabilities. The early maturity and fast growth of O. mossambicus can be explained by their enhanced digestive indices. The compa ratively low activities of acid protease, amylase, lipase and total alkaline protease of E. suratensis revealed poor digestive capacity than that of O. mossambicus

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study led to the recognition of Natrinema sp. BTSH 10 isolated from saltern ponds, as an ideal candidate species for production of gelatinase, which was noted as a halozyme capable of showing enzyme activity in the presence of 15% NaCl. Results obtained during the course of the present study indicated potential for application of this enzyme in industrial catalysis that are performed in the presence of high concentrations of salt. The enzyme characteristics noted with this gelatinase also indicate the scope for probable applications in leather industry, meat tenderization, production of fish sauce and soy sauce. Since halophilic proteases are tolerant to organic solvents, they could be used in antifouling coating preparations used to prevent biofouling of submarine equipments. The gelatinase from haloarchaea could be considered as a probable candidate for peptide synthesis. However, further studies are warranted on this haloarcheal gelatinase particularly on structure elucidation and enzyme engineering to suit a wide range of applications. There is immense scope for developing this halozyme as an industrial enzyme once thorough biochemistry of this gelatinase is studied and a pilot scale study is conducted towards industrial production of this enzyme under fermentation is facilitated. Based on the present study it is concluded that haloarchaea Natrinema sp. that inhabit solar saltern ponds are ideal source for deriving industrially important halozymes and molecular studies on enzymes are prerequisite for their probable industrial applications. This is the first time this species of archaea is recognized as a source of gelatinase enzyme that has potential for industrial applications.