29 resultados para Heavy quarks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis certain important aspects of heavy metal toxicity have been worked out. Recent studies have clearly shown that when experimental media contained more than one heavy metals, such metals could conspicuously influence the toxic reaction of the animals both in terms of quantity and nature. The experimental results available on individual metal toxicity show that, in majority of such results, unrealistically high concentrations of dissolved metals are involved. A remarkable number of factors have been shown to influence metal toxicity such as various environmental factors particularly temperature and salinity, the condition of the organism and the ability of some of the marine organisms to adapt to metallic contamination. Further, some of the more sensitive functions like embryonic and larval development, growth and fecundity, oxygen utilization and the function of various enzymes are found to be demonstrably sensitive in the presence of heavy metals. However, some of the above functions could be compensated for by adaptive process. If it is assumed that the presence of a single metal in higher concentrations could affect the life function of marine animals, more than one metal in the experimental media should manifest such effects in a greater scale. Commonly known as synergism or more than additivity, majority of heavy metals bring about synergistic reaction .The work presented in this thesis comprises lethal and sublethal toxicities of different salt forms of copper and silver on the brown mussel Perna indica. during the present investigation sublethal concentrations of copper and silver in their dent effects on survival, oxygen consumption, filtration, accumulation and depuration on Perna indica. The results are presented under different sections to make the presentation meaningful .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No serious attempt has so far been made in India to make use of the ‘Mussel watch’ concept as a useful tool for pollution monitoring of the marine and estuarine environment. The recently conducted 'National seminar on mussel watch’ by the Cochin University of Science and Technology (13-14 Feb, 1986) discussed the technical aspects related to mussel watch programme and the application of sentinel organism concept to the coastal areas of India. It is well known that the biological and physiological characteristics of the organism inhabiting tropical waters such as those prevailing in India, and the ecological as well as the environmental characteristics of temperate areas, where mussel watch programmes are already in existence differ greatly. So it is essential to adopt the techniques and standards developed for temperate species to the situations and conditions in India. In this context it is a prerequisite to collect information on physiology and other biological indices of stress of possible sentinel organisms like P.viridis. In consideration of the above, P. viridis which is a potential sentinel organism, is selected for the present study

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of new materials has been the hall mark of human civilization. The quest for making new devices and new materials has prompted humanity to pursue new methods and techniques that eventually has given birth to modern science and technology. With the advent of nanoscience and nanotechnology, scientists are trying hard to tailor materials by varying their size and shape rather than playing with the composition of the material. This, along with the discovery of new and sophisticated imaging tools, has led to the discovery of several new classes of materials like (3D) Graphite, (2D) graphene, (1D) carbon nanotubes, (0D) fullerenes etc. Magnetic materials are in the forefront of applications and have beencontributing their share to remove obsolescence and bring in new devices based on magnetism and magnetic materials. They find applications in various devices such as electromagnets, read heads, sensors, antennas, lubricants etc. Ferromagnetic as well as ferrimagnetic materials have been in use in the form of various devices. Among the ferromagnetic materials iron, cobalt and nickel occupy an important position while various ferrites finds applications in devices ranging from magnetic cores to sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is focused on the organelle and biochemical responses to heavy metal exposure in the fish Oreochromis mossambicus giving particular importance to the metal detoxifying machinery of the organism. The thesis is an outcome of the effort aimed at developing practicable monitoring techniques to deliver guidelines for biological effect monitoring and the need for specific biochemical methods to detect biological effects of heavy metals that can be interpreted in terms of the health status of the individual organism and eventually alterations in vital processes as growth and reproduction. The efficiency of the metal detoxifying metallothioneins which is an attractive tool for biological monitoring, their role as scavengers of trace metal ions and thus in relieving the biological machinery from their toxicity effects are important themes of this study. Efforts have also been made to test the reliability of the spill over hypothesis of the action of metallothioneins (Winge et a1.,1973) and their use as a biological barometer of heavy metal stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Industrialisation affects air, water, and soil. Industrial effluents which enter the aquatic environment either by direct disposal or through run off, affect living organisms at morphological and physiological levels. In any living tissue toxic materials exert their effects first at molecular and biochemical levels (Robbins and Angell, 1976). Most of the industrial effluents contain elevated concentrations of organic and inorganic chemicals capable of eliciting stimulatory or inhibitory effects on the metabolism of aquatic organisms. Heavy metals form an important group of environmental pollutants. Effects of pollution on the aquatic environment by heavy metals have received considerable attention in recent years due to their toxicity even at very low levels, persistence in the environment, and chances of getting biomagnified. A pollutant that does not affect a particular process under normal unstressed condition may affect the ability of the animal to adjust to changing environmental conditions which ultimately decrease its chances of survival (Thurberg et al., 1973

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nearshore marine ecosystem is a dynamic environment impacted by many activities, especially the coastal waters and sediments contiguous to major urban areas. Although heavy metals are natural constituents of the marine environment, inputs are considered to be conservative pollutants and are potentially toxic, accumulate in the sediment, are bioconcentrated by organisms and may cause health problems to humans via the food chain. A variety of metals in trace amounts are essential for biological processes in all organisms, but excessive levels can be detrimental by acting as enzyme inhibitors. Discharge of industrial wastewater, agriculture runoff and untreated sewage pose a particularly serious threat to the coastal environment of Kerala, but there is a dearth of studies in documenting the contaminant metals. This study aimed principally to assess such contamination by examining the results of heavy metal (Cu, Pb, Cr, Ni, Zn, Cd and Hg) analysis in seawater, sediment and benthic biota from a survey of five transects along the central and northern coast of Kerala in 2008 covering a 10.0 km stretch of near shore environment in each transect. Trophic transfer of metal contaminants from aquatic invertebrates to its predators was also assessed, by employing a suitable benthic food chain model in order to understand which all metals are undergoing biotransference (transfer of metals from a food source to consumer).The study of present contamination levels will be useful for potential environmental remediation and ecosystem restoration at contaminated sites and provides a scientific basis for standards and protective measures for the coastal waters and sediments. The usefulness of biomonitor proposed in this study would allow identification of different bioavailable metals as well as provide an assessment of the magnitude of metal contamination in the coastal marine milieu. The increments in concentration of certain metals between the predator and prey discerned through benthic food chain can be interpreted as evidence of biotransference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research investigations on pollution, particularly in coastal/ estuarine environments are recent ones and started only in 1970s. Hence the informations available are fragmentary and scattered. They throw some light only on either the concentration of heavy metals in water or in sediment or in organisms. No concerted efforts have been made to consolidate and correlate the results between the environment and biota. Literature on the level of concentration of heavy metals in different tissues of organisms with regard to their availability in the living media, their ratio, their inter—relationship, tolerance limit of organisms, etc. are very few or rather nil. in view of the importance enumerated above, the candidate has selected the topic "Effects of some heavy metals copper, zinc and lead on certain tissues of E E (Hamilton and Buchanan) in different environments" for detailed studies and to understand systematically (i) the source of effluents and wastes, (ii) the concentration of heavy metals copper, zinc and lead in water, in sediments and in tissues of the test animal, (iii) their effects, (iv) capacity of tolerance and accumulation in different tissues of the animal, and (V) the "Bioaccumulation Factor", etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Industrialization of our society has led to an increased production and discharge of both xenobiotic and natural chemical substances. Many of these chemicals will end up in the soil. Pollution of soils with heavy metals is becoming one of the most severe ecological and human health hazards. Elevated levels of heavy metals decrease soil microbial activity and bacteria need to develop different mechanisms to confer resistances to these heavy metals. Bacteria develop heavy-metal resistance mostly for their survivals, especially a significant portion of the resistant phenomena was found in the environmental strains. Therefore, in the present work, we check the multiple metal tolerance patterns of bacterial strains isolated from the soils of MG University campus, Kottayam. A total of 46 bacterial strains were isolated from different locations of the campus and tested for their resistant to 5 common metals in use (lead, zinc, copper, cadmium and nickel) by agar dilution method. The results of the present work revealed that there was a spatial variation of bacterial metal resistance in the soils of MG University campus, this may be due to the difference in metal contamination in different sampling location. All of the isolates showed resistance to one or more heavy metals selected. Tolerance to lead was relatively high followed by zinc, nickel, copper and cadmium. About 33% of the isolates showed very high tolerance (>4000μg/ml) to lead. Tolerance to cadmium (65%) was rather low (<100 μg/ml). Resistance to zinc was in between 100μg/ml - 1000μg/ml and the majority of them shows resistance in between 200μg/ml - 500μg/ml. Nickel resistance was in between 100μg/ml - 1000μg/ml and a good number of them shows resistance in between 300μg/ml - 400μg/ml. Resistance to copper was in between <100μg/ml - 500μg/ml and most of them showed resistance in between 300μg/ml - 400μg/ml. From the results of this study, it was concluded that heavy metal-resistant bacteria are widely distributed in the soils of MG university campus and the tolerance of heavy metals varied among bacteria and between locations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lack of shrimp cell lines has hindered the study of pollutants which adversely affects shrimp health and its export value. In this context a primary haemocyte culture developed from Penaeus monodon was employed for assessing the cytotoxicity and genotoxicity of two heavy metal compounds, cadmium chloride and mercuric chloride and two organophosphate insecticides, malathion and monocrotophos. Using MTT assay 12 h IC50 values calculated were 31.09 16.27 mM and 5.52 1.16 mM for cadmium chloride and mercuric chloride and 59.94 52.30 mg l 1 and 186.76 77.00 mg l 1 for malathion and monocrotophos respectively. Employing Comet assay, DNA damage inflicted by these pollutants on haemocytes were evaluated and the pollutants induced DNA damage in >60% of the cells. The study suggested that haemocyte culture could be used as a tool for quantifying cytotoxicity and genotoxicity of aquaculture drugs, management chemicals and pollutants

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline thin films prepared by RF plasma polymerisation were irradiated with 92MeV Si ions for various fluences of 1 1011, 1 1012 and 1 1013 ions/cm2. FTIR and UV–vis–NIR measurements were carried out on the pristine and Si ion irradiated polyaniline thin films for structural evaluation and optical band gap determination. The effect of swift heavy ions on the structural and optical properties of plasma-polymerised aniline thin film is investigated. Their properties are compared with that of the pristine sample. The FTIR spectrum indicates that the structure of the irradiated sample is altered. The optical studies show that the band gap of irradiated thin film has been considerably modified. This has been attributed to the rearrangement in the ring structure and the formation of CRC terminals. This results in extended conjugated structure causing reduction in optical band gap

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe–Ni based amorphous thin films were prepared by thermal evaporation. These films were irradiated by 108 MeV Ag8+ ions at room temperature with fluences ranging from 1 1012 to 3 1013 ions/cm2 using a 15 UD Pelletron accelerator. Glancing angle x-ray diffraction studies showed that the irradiated films retain their amorphous nature. The topographical evolution of the films under swift heavy ion SHI bombardment was probed using atomic force microscope and it was noticed that surface roughening was taking place with ion beam irradiation. Magnetic measurements using a vibrating sample magnetometer showed that the coercivity of the films increases with an increase in the ion fluence. The observed coercivity changes are correlated with topographical evolution of the films under SHI irradiation. The ability to modify the magnetic properties via SHI irradiation could be utilized for applications in thin film magnetism

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swift heavy ion induced changes in microstructure and surface morphology of vapor deposited Fe–Ni based metallic glass thin films have been investigated by using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Ion beam irradiation was carried out at room temperature with 103 MeV Au9+ beam with fluences ranging from 3 1011 to 3 1013 ions/cm2. The atomic force microscopy images were subjected to power spectral density analysis and roughness analysis using an image analysis software. Clusters were found in the image of as-deposited samples, which indicates that the film growth is dominated by the island growth mode. As-deposited films were amorphous as evidenced from X-ray diffraction; however, high resolution transmission electron microscopy measurements revealed a short range atomic order in the samples with crystallites of size around 3 nm embedded in an amorphous matrix. X-ray diffraction pattern of the as-deposited films after irradiation does not show any appreciable changes, indicating that the passage of swift heavy ions stabilizes the short range atomic ordering, or even creates further amorphization. The crystallinity of the as-deposited Fe–Ni based films was improved by thermal annealing, and diffraction results indicated that ion beam irradiation on annealed samples results in grain fragmentation. On bombarding annealed films, the surface roughness of the films decreased initially, then, at higher fluences it increased. The observed change in surface morphology of the irradiated films is attributed to the interplay between ion induced sputtering, volume diffusion and surface diffusion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy metals in the surface sediments of the two coastal ecosystems of Cochin, southwest India were assessed. The study intends to evaluate the degree of anthropogenic influence on heavy metal concentration in the sediments of the mangrove and adjacent estuarine stations using enrichment factor and geoaccumulation index. The inverse relationship of Cd and Zn with texture in the mangrove sediments suggested the anthropogenic enrichment of these metals in the mangrove systems. In the estuarine sediments, the absence of any significant correlation of the heavy metals with other sedimentary parameters and their strong interdependence revealed the possibility that the input is not through the natural weathering processes. The analysis of enrichment factor indicated a minor enrichment for Pb and Zn in mangrove sediments. While, extremely severe enrichment for Cd, moderate enrichment for Zn and minor enrichment of Pb were observed in estuarine system. The geo accumulation index exhibited very low values for all metals except Zn, indicating the sediments of the mangrove ecosystem are unpolluted to moderately polluted by anthropogenic activities. However, very strongly polluted condition for Cd and a moderately polluted condition for Zn were evident in estuarine sediments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.