35 resultados para Graphs and Digraphs
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
The median (antimedian) set of a profile π = (u1, . . . , uk) of vertices of a graphG is the set of vertices x that minimize (maximize) the remoteness i d(x,ui ). Two algorithms for median graphs G of complexity O(nidim(G)) are designed, where n is the order and idim(G) the isometric dimension of G. The first algorithm computes median sets of profiles and will be in practice often faster than the other algorithm which in addition computes antimedian sets and remoteness functions and works in all partial cubes
Resumo:
The distance DG(v) of a vertex v in an undirected graph G is the sum of the distances between v and all other vertices of G. The set of vertices in G with maximum (minimum) distance is the antimedian (median) set of a graph G. It is proved that for arbitrary graphs G and J and a positive integer r 2, there exists a connected graph H such that G is the antimedian and J the median subgraphs of H, respectively, and that dH(G, J) = r. When both G and J are connected, G and J can in addition be made convex subgraphs of H.
Resumo:
A periphery transversal of a median graph G is introduced as a set of vertices that meets all the peripheral subgraphs of G. Using this concept, median graphs with geodetic number 2 are characterized in two ways. They are precisely the median graphs that contain a periphery transversal of order 2 as well as the median graphs for which there exists a profile such that the remoteness function is constant on G. Moreover, an algorithm is presented that decides in O(mlog n) time whether a given graph G with n vertices and m edges is a median graph with geodetic number 2. Several additional structural properties of the remoteness function on hypercubes and median graphs are obtained and some problems listed
Resumo:
The D-eigenvalues of a graph G are the eigenvalues of its distance matrix D, and the D-energy ED(G) is the sum of the absolute values of its D-eigenvalues. Two graphs are said to be D-equienergetic if they have the same D-energy. In this note we obtain bounds for the distance spectral radius and D-energy of graphs of diameter 2. Pairs of equiregular D-equienergetic graphs of diameter 2, on p = 3t + 1 vertices are also constructed.
Resumo:
In this paper equienergetic self-complementary graphs on p vertices for every p = 4k; k ¸ 2 and p = 24t + 1; t ¸ 3 are constructed
Resumo:
Two graphs G and H are Turker equivalent if they have the same set of Turker angles. In this paper some Turker equivalent family of graphs are obtained.
Resumo:
this paper, the median and the antimedian of cographs are discussed. It is shown that if G, and G2 are any two cographs, then there is a cograph that is both Eulerian and Hamiltonian having Gl as its median and G2 as its antimedian. Moreover, the connected planar and outer planar cographs are characterized and the median and antimedian graphs of connected, planar cographs are listed.
Resumo:
The D-eigenvalues of a graph G are the eigenvalues of its distance matrix D, and the D-energy ED(G) is the sum of the absolute values of its D-eigenvalues. Two graphs are said to be D-equienergetic if they have the same D-energy. In this note we obtain bounds for the distance spectral radius and D-energy of graphs of diameter 2. Pairs of equiregular D-equienergetic graphs of diameter 2, on p = 3t + 1 vertices are also constructed.
Resumo:
Antimedian graphs are introduced as the graphs in which for every triple of vertices there exists a unique vertex x that maximizes the sum of the distances from x to the vertices of the triple. The Cartesian product of graphs is antimedian if and only if its factors are antimedian. It is proved that multiplying a non-antimedian vertex in an antimedian graph yields a larger antimedian graph. Thin even belts are introduced and proved to be antimedian. A characterization of antimedian trees is given that leads to a linear recognition algorithm.
Resumo:
For routing problems in interconnection networks it is important to find the shortest containers between any two vertices, since the w-wide diameter gives the maximum communication delay when there are up to w−1 faulty nodes in a network modeled by a graph. The concept of ‘wide diameter’ was introduced by Hsu [41] to unify the concepts of diameter and The concept of ‘domination’ has attracted interest due to its wide applications in many real world situations [38]. A connected dominating set serves as a virtual backbone of a network and it is a set of vertices that helps in routing. In this thesis, we make an earnest attempt to study some of these notions in graph products. This include, the diameter variability, the diameter vulnerability, the component factors and the domination criticality.connectivity
Resumo:
A profile on a graph G is any nonempty multiset whose elements are vertices from G. The corresponding remoteness function associates to each vertex x 2 V.G/ the sum of distances from x to the vertices in the profile. Starting from some nice and useful properties of the remoteness function in hypercubes, the remoteness function is studied in arbitrary median graphs with respect to their isometric embeddings in hypercubes. In particular, a relation between the vertices in a median graph G whose remoteness function is maximum (antimedian set of G) with the antimedian set of the host hypercube is found. While for odd profiles the antimedian set is an independent set that lies in the strict boundary of a median graph, there exist median graphs in which special even profiles yield a constant remoteness function. We characterize such median graphs in two ways: as the graphs whose periphery transversal number is 2, and as the graphs with the geodetic number equal to 2. Finally, we present an algorithm that, given a graph G on n vertices and m edges, decides in O.mlog n/ time whether G is a median graph with geodetic number 2
Resumo:
An antimedian of a pro le = (x1; x2; : : : ; xk) of vertices of a graph G is a vertex maximizing the sum of the distances to the elements of the pro le. The antimedian function is de ned on the set of all pro les on G and has as output the set of antimedians of a pro le. It is a typical location function for nding a location for an obnoxious facility. The `converse' of the antimedian function is the median function, where the distance sum is minimized. The median function is well studied. For instance it has been characterized axiomatically by three simple axioms on median graphs. The median function behaves nicely on many classes of graphs. In contrast the antimedian function does not have a nice behavior on most classes. So a nice axiomatic characterization may not be expected. In this paper such a characterization is obtained for the two classes of graphs on which the antimedian is well-behaved: paths and hypercubes.