50 resultados para Fabrication of polymer optical fibres
Resumo:
The length-dependent tuning of the fluorescence spectra of a dye doped polymer fiber is reported. The fiber is pumped sideways and the fluorescence is measured from one of the ends. The excitation of a finite length of dye doped fiber is done by a diode pumped solid state laser at a wavelength of 532 nm. The fluorescence emission is measured at various positions of the fiber starting from a position closer to the pumping region and then progressing toward the other end of the fiber. We observe that the optical loss coefficients for shorter and longer distances of propagation through the dye doped fiber are different. At longer distances of propagation, a decrease in optical loss coefficient is observed. The fluorescence peaks exhibit a redshift of 12 nm from 589 to 610 nm as the point of illumination progresses toward the detector end. This is attributed to the self-absorption and re-emission of the laser dye in the fiber.
Resumo:
Department of Physics, Cochin University of Science & Technology
Resumo:
Preparation of an appropriate optical-fiber preform is vital for the fabrication of graded-index polymer optical fibers (GIPOF), which are considered to be a good choice for providing inexpensive high bandwidth data links, for local area networks and telecommunication applications. Recent development of the interfacial gel polymerization technique has caused a dramatic reduction in the total attenuation in GIPOF, and this is one of the potential methods to prepare fiber preforms for the fabrication of dye-doped polymer-fiber amplifiers. In this paper, the preparation of a dye-doped graded-index poly(methyl methacrylate) (PMMA) rod by the interfacial gel polymerization method using a PMMA tube is reported. An organic compound of high-refractive index, viz., diphenyl phthalate (DPP), was used to obtain a graded-index distribution, and Rhodamine B (Rh B), was used to dope the PMMA rod. The refractive index profile of the rod was measured using an interferometric technique and the index exponent was estimated. The single pass gain of the rod was measured at a pump wavelength of 532 nm. The extent of doping of the Rh B in the preform was studied by axially exciting a thin slice of the rod with white light and measuring the spatial variation of the fluorescence intensity across the sample.
Resumo:
The fabrication and analytical applications of two types of potentiometric sensors for the determination of ketoconazole (KET) are described. The sensors are based on the use of KET-molybdophosphoric acid (MPA) ion pair as electroactive material. The fabricated sensors include both polymer membrane and carbon paste electrodes. Both sensors showed a linear, stable and near Nernstian slope of 57.8mV=decade and 55.2mV=decade for PVC membrane and carbon paste sensors respectively over a relatively wide range of KET concentration (1×10-2-5×10-5 and 1×10-2-1×10-6). The sensors showed a fast response time of <30 sec and <45 sec. A useful pH range of 3–6 was obtained for both types of sensors. A detection limit of 2.96 10 5M was obtained for PVC membrane sensor and 6.91 10 6M was obtained for carbon paste sensor. The proposed sensors proved to have a good selectivity for KET with respect to a large number of ions. The proposed sensors were successfully applied for the determination of KET in pharmaceutical formulations. The results obtained are in good agreement with the values obtained by the standard method.
Resumo:
Two-photon excited (TPE) side illumination fluorescence studies in a Rh6G-RhB dye mixture doped polymer optical fiber (POF) and the effect of energy transfer on the attenuation coefficient is reported. The dye doped POF is pumped sideways using 800 nm, 70 fs laser pulses from a Ti:sapphire laser, and the TPE fluorescence emission is collected from the end of the fiber for different propagation distances. The fluorescence intensity of RhB doped POF is enhanced in the presence of Rh6G as a result of energy transfer from Rh6G to RhB. Because of the reabsorption and reemission process in dye molecules, an effective energy transfer is observed from the shorter wavelength part of the fluorescence spectrum to the longer wavelength part as the propagation distance is increased in dye doped POF. An energy transfer coefficient is found to be higher at shorter propagation distances compared to longer distances. A TPE fluorescence signal is used to characterize the optical attenuation coefficient in dye doped POF. The attenuation coefficient decreases at longer propagation distances due to the reabsorption and reemission process taking place within the dye doped fiber as the propagation distance is increased.
Resumo:
Multimode laser emission is observed in a polymer optical fiber doped with a mixture of Rhodamine 6G (Rh 6G) and Rhodamine B (Rh B) dyes. Tuning of laser emission is achieved by using the mixture of dyes due to the energy transfer occurring from donor molecule (Rh 6G) to acceptor molecule (Rh B). The dye doped poly(methyl methacrylate)-based polymer optical fiber is pumped axially at one end of the fiber using a 532 nm pulsed laser beam from a Nd:YAG laser and the fluorescence emission is collected from the other end. At low pump energy levels, fluorescence emission is observed. When the energy is increased beyond a threshold value, laser emission occurs with a multimode structure. The optical feedback for the gain medium is provided by the cylindrical surface of the optical fiber, which acts as a cavity. This fact is confirmed by the mode spacing dependence on the diameter of the fiber.
Resumo:
The design and development of an evanescent wave sensor to determine the etching rate of the core of an optical fibre is discussed in this paper. The working of the device is based on the principle of propagation and loss of the evanescent wave in the cladding region of the fibre. The fraction of light intensity creeping out of the core of an uncladded fibre is a function of the core radius. As this radius decreases, the evanescent wave coupling to the medium surrounding the core enhances. This results in a decrease of the transmitted light intensity through the fibre. This technique is useful to design and fabricate optical fibres with different core geometries.
Resumo:
Investigations on thin films that started decades back due to scientific curiosity in the properties of a two-dimensional solid, has developed into a leading research field in recent years due to the ever expanding applications of the thin films in the fann of a variety of active and passive microminiaturized components and devices, solar cells, radiation sowces and detectors, magnetic memory devices, interference filters, refection and antireflection coatings etc. [1]. The recent environment and energy resource concerns have aroused an enonnous interest in the study of materials in thin film form suitable for renewable energy sources such as photovoltaic devices. Recognition of the immense potential applications of the chalcopyrites that can fonn homojunctions or heterojunctions for solar cell fabrication has attracted many researchers to extensive and intense research on them. In this thesis, we have started with studies performed on CuInSe, thin films, a technologically well recognized compound belonging to the l•ill-VI family of semiconductors and have riveted on investigations on the preparation and characterization of compoWlds Culn3Se5. Culn5Seg and CuIn7Se12, an interesting group of compounds related to CuInSe2 called Ordered Vacancy Compounds, having promising applications in photovoltaic devices. A pioneering work attempted on preparing and characterizing the compound Culn7Sel2 is detailed in the chapters on OVC's. Investigation on valence band splitting in avc's have also been attempted for the first time and included as the last chapter in the thesis. Some of the salient features of the chalcopyrite c.ompounds are given in the next section .of this introductory chapter.
Resumo:
Studies on pulse propagation in single mode optical fibers have attracted interest from a wide area of science and technology as they have laid down the foundation for an in-depth understanding of the underlying physical principles, especially in the field of optical telecommunications. The foremost among them is discovery of the optical soliton which is considered to be one of the most significant events of the twentieth century owing to its fantastic ability to propagate undistorted over long distances and to remain unaflected after collision with each other. To exploit the important propertia of optical solitons, innovative mathematical models which take into account proper physical properties of the single mode optical fibers demand special attention. This thesis contains a theoretical analysis of the studies on soliton pulse propagation in single mode optical fibers.
Resumo:
Nonlinear optics has been a rapidly growing field in recent decades since the invention of lasers. The systematic progress in the laser technology increases our efficiency in the generation and control of coherent optical radiations. Nonlinear optics is based on the study ofeffects and phenomena related to the interaction of intense coherent light radiation with matter. Compared to other light sources laser radiation can provide high directionality, high monochromaticiry, high brightness and high photon degeneracy. At such a very intense incident beam, the matter responds in a nonlinear manner to the incident radiation fields, which endows the media :1 characteristic to change the refractive index or absorption coe fflcient of the media or the wavelength, or the frequency of the incident electromagnetic waves. This thesis encompasses the fabrication of nonlinear optical devices based on semiconductor and metal nanostructures. The presented work focus on the experimental and theoretical discussions on nonlinear optical effects especially nonlinear absorption and refraction exhibitted by metal and semiconductor nanostructures
Resumo:
Two-dimensional electronic systems play a crucial role in modern electronics and offer a multitude of opportunities to study the fundamental phenomena at low dimensional physics. A quantum well heterostructure based on polyaniline (P) and iodine doped polyaniline (I) thin films were fabricated using radio frequency plasma polymerization on indium tin oxide coated glass plate. Scanning probe microscopy and scanning electron microscopy studies were employed to study the morphology and roughness of the polymer thin films. Local electronic density of states (LDOS) of the P–I–P heterostructures is probed using scanning tunnelling spectroscopy (STS). A step like LDOS is observed in the P–I–P heterostructure and is attributed to the quantum well confinement of electrons in the polymer heterostructure.
Resumo:
In this study Fabrication of Potentiometric sensors for the determination of certain metal ions, presents the synthesis and characterization of seven ionophores, their use in the fabrication of potentiometric sensors and the results and discussion of fourteen sensors developed for the determination of five transition metal ions. As part of the present investigations a total of fourteen potentiometric sensors have been developed and fabricated. A three fold approach has been taken in developing he sensors, PVC plasticized membrane sensor, carbon paste electrode and chemically modified carbon paste electrode. All the sensors are highly useful in the determination of metal ions such as manganese, nickel, copper, mercury and lead. A through analytical study has been carried out with respect to each other developed. Based on these studies, optimum conditions have been developed for the quantitative determinations of the selected metal ions using the sensors. Systematic application studies have also been carried out for all the developed sensors and the results revealed that the presently developed sensors are far superior than most of the sensors reported.
Resumo:
A fairly rigorous analytical treatment of the power characteristics of dielectric optical waveguides with Piet Hein core-cross sectional geometry is presented in this paper. This kind of wareguide structure would be advantageous owing to the absence of corners, which are found in rectangular guides, resulting in undesirable loss (hit to the scattering of light. In order to simplify this theoretical approach. em approximation of vanishing refractive index difference between the guiding and the non-guiding sections is implemented. The variation eJ logarithmic power is shown for different dimensions of the core, corresponding to different azimuthal modal indices. It is found that the nutlet with higher index values carry less logaritlunic power in the lower tail of the propagation 's constant range, and this feature affects the higher tail. A better kind of uniformity of the power distribution is observed near the higher tail of the range of propagation Constants