18 resultados para Extinction Probabilities


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fish, a natural resource, has received great attention from all over the world. since it provides a cheap protein, employment and income to the millions of people for centuries. So fishermen, industrialist and multinationals are trying to exploit the marine resources to their maximum benefit by using modern craft, advance fishing equipments and efficient gear. Fishery resources in the open system particularly in oceans, were considered to be unlimited. However, recent developments in the innovation of efficient craft and gear using well tested material fitted with modern equipments that have greatly enhanced the mobility of craft, agility of gear and the ability of equipments to locate fishery resources have proved otherwise. Hence as the exploitation increases with more effort entering the fishery, the catch per unit of fishing effort starts to decline due to the limitness of the resources. The heavy fishing pressure in the recent past led to commercial extinction of a number of stocks such as. the North Sea herring, California sardine, Japanese Sardine and Peruvian anchovy (FAO. 1968: Gulland, 1974). In India, seer fish from Palk-Bay declined due to uncontrolled fishing (Devaraj 1983).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The survival of Escherichia coli in tropical estuarine water has been studied under controlled laboratory conditions using microcosms. The survival has been assessed in terms of various self purifying factors of the natural waters such as biological, chemical and physical factors. The biological factors considered included competition from other microorganisms, predation by protozoa and coliphages. The suitability of the chemical composition of estuarine water has been studied under chemical factors and negative impact of sunlight has been studied under physical factors. The results revealed that sunlight exerted maximum negative impact, followed by biotic factors contained in the estuarine water. However, the chemical composition of the estuarine water is found to be suitable for the growth and survival of E. coli. The injury exerted by each of the above factors was also evaluated by using a selective and non-selective medium in conjunction. It was found that sunlight resulted in 100% injury of the cells as the cells failed to develop in a selective medium. While, sunlight resulted in the extinction of 90% of the E. coli cells within the first two hours of exposure, biotic factors took nearly 24 hours to remove the same amount of population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several series of Eu3+ based red emitting phosphor materials were synthesized using solid state reaction route and their properties were characterized. The present studies primarily investigated the photoluminescence properties of Eu3+ in a family of closely related host structure with a general formula Ln3MO7. The results presented in the previous chapters throws light to a basic understanding of the structure, phase formation and the photoluminescence properties of these compounds and their co-relations. The variation in the Eu3+ luminescence properties with different M cations was studied in Gd3-xMO7 (M = Nb, Sb, Ta) system.More ordering in the host lattice and more uniform distribution of Eu3+ ions resulting in the increased emission properties were observed in tantalate system.Influence of various lanthanide ion (Lu, Y, Gd, La) substitutions on the Eu3+ photoluminescence properties in Ln3MO7 host structures was also studied. The difference in emission profiles with different Ln ions demonstrated the influence of long range ordering, coordination of cations and ligand polarizability in the emission probabilities, intensity and quantum efficiency of these phosphor materials. Better luminescence of almost equally competing intensities from all the 4f transitions of Eu3+ was noticed for La3TaO7 system. Photoluminescence properties were further improved in La3TaO7 : Eu3+ phosphors by the incorporation of Ba2+ ions in La3+ site. New red phosphor materials Gd2-xGaTaO7 : xEu3+ exhibiting intense red emissions under UV excitation were prepared. Optimum doping level of Eu3+ in these different host lattices were experimentally determined. Some of the prepared samples exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. In the present studies, Eu3+ acts as a structural probe determining the coordination and symmetry of the atoms in the host lattice. Results from the photoluminescence studies combined with the powder XRD and Raman spectroscopy investigations helped in the determination of the correct crystal structures and phase formation of the prepared compounds. Thus the controversy regarding the space groups of these compounds could be solved to a great extent. The variation in the space groups with different cation substitutions were discussed. There was only limited understanding regarding the various influential parameters of the photoluminescence properties of phosphor materials. From the given studies, the dependence of photoluminescence properties on the crystal structure and ordering of the host lattice, site symmetries, polarizability of the ions, distortions around the activator ion, uniformity in the activator distribution, concentration of the activator ion etc. were explained. Although the presented work does not directly evidence any application, the materials developed in the studies can be used for lighting applications together with other components for LED lighting. All the prepared samples were well excitable under near UV radiation. La3TaO7 : 0.15Eu3+ phosphor with high efficiency and intense orange red emissions can be used as a potential red component for the realization of white light with better color rendering properties. Gd2GaTaO7 : Eu3+, Bi2+ red phosphors give good color purity matching to NTSC standards of red. Some of these compounds exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. However thermal stability and electrical output using these compounds should be studied further before applications. Based on the studies in the closely related Ln3MO7 structures, some ideas on selecting better host lattice for improved luminescence properties could be drawn. Analyzing the CTB position and the number of emission splits, a general understanding on the doping sites can be obtained. These results could be helpful for phosphor designs in other host systems also, for enhanced emission intensity and efficiency.