24 resultados para Epoxidised cresol novolac resins


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present scenario, there is an increasing demand for natural products in food industry, pharmaceuticals, cosmetics and agricultural sectors. In this context phytochemical study to identify newer chemicals has got great relevance. Phytochemical studies have become more reliable and encouraging with the development of modern analytical techniques.In the present work the leaves of Piper colubrinum (Piperaceae), aerial parts of Mussaenda fiondosa (Rubiaceae) and Humboldtia vahliana (Leguminosae) and the pericarp of fruits of Artocarpus heterophyllus (Moraceae) were investigated for their secondary metabolites. The major compounds isolated belong to the groups of flavonoids and triterpenoids.Naturally occurring flavonoids have been used widely in chemotaxonomic studies of plants. Flavones and flavonols constitute a group of biosynthetically related natural products. No universal function has been established for flavones and flavonols in plants. However, many functions in individual plants have been demonstrated. These include protection of plants from ultraviolet light, insects and pests; pollinator attractants; antioxidants; plant hormone controllers; enzyme inhibitors and allelopathic agents. Flavonoids are attracting the attention of medical scientists in recent years because of their anticarcinogenic, antiallergic and antiinflammatory properties. The recent discovery that flavonoids are involved in the process of nitrogen fixation in plants also opens the way for agricultural application of these constituents.Triterpenoids are another class of compounds that are ubiquitous in plants. Some triterpenoids present in the latex and resins of plants are believed to be involved in chemical defence against pathogens and herbivores. Triterpenoids possess various biological properties including anti-inflammatory, antifeedant, pesticidal, fungitoxic and antimicrobial activities. Triterpenoids with cytotoxic activity and inhibitory effect on seed germination are also known.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research project aims at developing new applications for CNSL in the polymer field. Cashew nut shell liquid (CNSL) is a cheap agro-byproduct and renewable resource which consists mainly of substituted phenols. By using CNSL in place of phenol, phenol derived from petrochemicals can be conserved and a cheap agro-byproduct utilized.In this study CNSL based resin is prepared by condensing a mixture of phenol and CNSL with hexamethylenetetramine and the effect of P: F ratio and CNSL: P ratio on the properties of synthesized resin is studied. The adhesive properties of CNSL based resin in combination with neoprene rubber are investigated. The effect of varying the stoichiometric ratios between total phenol and formaldehyde and CNSL and phenol of the resin, resin content, choice and extent of fillers and adhesion promoters in the adhesive formulation are studied. The effect of resin on the ageing properties of various elastomers is also studied by following changes in tensile strength, elongation at break, modulus, tear strength, swelling index and acetone soluble matter. Crude CNSL and resins with different P: F ratios and CNSL: P ratios are incorporated into elastomers. Lastly, utility of CNSL based resin as binder for making particleboard is investigated.The results show that CNSL based resin is an effective ingredient in adhesives for bonding aluminium to aluminium. The resin used for adhesive fonnulation gives the best performance at 45 to 55 phr resin and a total phenol: formaldehyde of l:2.9. The resin when added at a rate of l5 phr improves ageing characteristics of elastomers with respect to mechanical properties. The reaction mixture of CNSL and hexa and the resin resulting from the condensation of CN SL, phenol and hexa can be used as effective binders for moulding particleboard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to determine the ability of specifically adapted bacteria to degrade phenol and to quantify the rate of biodegradation at. Different concentrations by mixed as well as individual isolates. Regular quantitative analysis of phenolics and aerobic phenololytic heterotrophs from five different ecosystems were done during 1990-1991, and the ability of microorganisms isolated from those areas, to utilize phenol, o-cresol and orcinol was also studied. In addition, data on environmental parameters like temperature, dissolved oxygen, salinity, pH, organic carbon and nutrients were also collected during the period of study The present study is one of its first kind in natural aquatic environment and has aimed to bring out some idea about the potential phenol biodegrades in such environments where the phenol concentration is beyond permitted level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is essentially concerned with a study of the recovery of pungency-free colour matter from capsicum spice of Indian origin. A spice oleoresin may be defined as the total soluble extract of the spice in a specific solvent and embraces all the active components that contribute to aroma, taste and related sensory factors associated with the spice, together with varying amounts of pigments, plant waxes, resins and fixed oils. Whereas, in general, oleoresins are coveted for their flavour qualities, in some cases, the pigments present therein play a vital role in food technology Of these, capsicum oleoresin is the most outstanding, since it contributes both colour and flavour principles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparative study of acid-base properties and catalytic activity of Sn-La and Sn-Sm mixed oxides and their corresponding sulfate modified analogues are reported in this thesis. The catalytic activity and product selectivity in the decomposition of alcohols are correlated with the acid-base and redox properties of the catalyst systems under study The effect of catalyst preparation, pretreatment and various reaction parameters on the catalytic activity of sulfate modified oxides is investigated in the oxidative dehydrogenation reactions The experimental conditions are optimised to synthesise industrially important organic chemicals viz. 2,6 xylenol, o-cresol, N-methylanilne and N,N-dimethylaniline employing the mixed oxide systems. The effect of sulfate treatment on the catalytic activity of these systems in the alkylation reactions of phenol, anisole and aniline is also investigated and the merits and demerits of sulfate treatment are highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urea-formaldehyde resins find numerous applications in adhesive, textile finishing and moulded plastic industries. Kinetic investigations of the reactions of urea and its related compounds with formaldehyde in aqueous acid, alkaline and neutral media have been carried out. A thin—layer chromatographic method was developed for the separation and estimation of the products of these reactions. Using this technique the various initial steps in the reactions were analysed and the rate constants have been determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented in this thesis is regarding the development and evaluation of new bonding agents for short polyester fiber - polyurethane elastomer composites. The conventional bonding system based on hexamethylenetetramine, resorcinol and hydrated silica was not effective as a bonding agent for the composite, as the water eliminated during the formation of the RF resin hydrolysed the urethane linkages. Four bonding agents based on MDI/'I‘DI and polypropyleneglycol, propyleneglycol and glycerol were prepared and the composite recipe was optimised with respect to the cure characteristics and mechanical properties. The flow properties, stress relaxation pattern and the thermal degradation characteristics of the composites containing different bonding agents were then studied in detail to evaluate the new bonding systems. The optimum loading of resin was 5 phr and the ratio of the -01 to isocyanate was 1:1. The cure characteristics showed that the optimum combination of cure rate and processability was given by the composite with the resin based on polypropyleneglycol/ glycerol/ 4,4’diphenylmethanediisocynate (PPG/GL/MDI). From the rheological studies of the composites with and without bonding agents it was observed that all the composites showed pseudoplastic nature and the activation energy of flow of the composite was not altered by the presence of bonding agents. Mechanical properties such as tensile strength, modulus, tear resistance and abrasion resistance were improved in the presence of bonding agents and the effect was more pronounced in the case of abrasion resistance. The composites based on MDI/GL showed better initial properties while composites with resins based on MDI/PPG showed better aging resistance. Stress relaxation showed a multistage relaxation behaviour for the composite. Within the-strain levels studied, the initial rate of relaxation was higher and the cross over time was lesser for the composite containing bonding agents. The bonding agent based on MDI/PPG/GL was found to be a better choice for improving stress relaxation characteristics with better interfacial bonding. Thennogravimetirc analysis showed that the presence of fiber and bonding agents improved the thennal stability of the polyurethane elastomer marginally and it was maximum in the case of MDI / GL based bonding agents. The kinetics of degradation was not altered by the presence of bonding agents

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potential applications of nickel nanoparticles demand the synthesis of self-protected nickel nanoparticles by different synthesis techniques. A novel and simple technique for the synthesis of self-protected nickel nanoparticles is realized by the inter-matrix synthesis of nickel nanoparticles by cation exchange reduction in two types of resins. Two different polymer templates namely strongly acidic cation exchange resins and weakly acidic cation exchange resins provided with cation exchange sites which can anchor metal cations by the ion exchange process are used. The nickel ions which are held at the cation exchange sites by ion fixation can be subsequently reduced to metal nanoparticles by using sodium borohydride as the reducing agent. The composites are cycled repeating the loading reduction cycle involved in the synthesis procedure. X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron microscopy, Energy Dispersive Spectrum, and Inductively Coupled Plasma Analysis are effectively utilized to investigate the different structural characteristics of the nanocomposites. The hysteresis loop parameters namely saturation magnetization and coercivity are measured using Vibrating Sample Magnetometer. The thermomagnetization study is also conducted to evaluate the Curie temperature values of the composites. The effect of cycling on the structural and magnetic characteristics of the two composites are dealt in detail. A comparison between the different characteristics of the two nanocomposites is also provided

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unsaturated polyester resins (UPRs) are extensively used by the fiber-reinforced plastic (FRPs) industry. These resins have the disadvantages of brittleness and poor resistance to crack propagation. In this study, UPRs were chemically modified by reactive blending with polyurethane prepolymers having terminal isocyanate groups. Hybrid networks were formed by copolymerisation of unsaturated polyesters with styrene and simultaneous reaction between terminal hydroxyl groups of unsaturated polyester and isocyanate groups of polyurethane prepolymer. The prepolymers were based on toluene diisocyanate (TDI) and each of hydroxy-terminated natural rubber (HTNR), hydroxy- terminated polybutadiene (HTPB), polyethylene glycol (PEG), and castor oil. Properties like tensile strength, toughness, impact resistance, and elongation-at-break of the modified UPRs show considerable improvement by this modification. The thermal stability of the copolymer is also marginally better