40 resultados para Elastomers.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: Linseed oil is used in the dual roles of the plasticizer and the fatty acid component of the activator in nitrile rubber vulcanizates. The study shows that the substitution can substantially improve the mechanical properties in addition to other advantages such as increased cure rate, reduced leachability and reduced compound cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carboxy Terminated Liquid Natural Rubber (CTNR) was prepared by photochemical reaction using maleic anhydride and masticated natural rubber (NR). The use of CTNR as an adhesive in bonding rubber to rubber and rubber to metal was studied. The peel strengths and lap shear strengths of the adherends which were bonded using CTNR were determined. The effect of using a tri isocyanate with CTNR in rubber to metal bonding was also studied. It is found that CTNR can effectively be used in bonding rubber to rubber and rubber to mild steel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: Phenol was chemically attached to low molecular weight chlorinated polyisobutylene and stearic acid respectively. These phenolic antioxidants were characterised by IR, 1H NMR and TGA. The efficiency and permanence of these bound antioxidants were compared with conventional antioxidants in natural rubber vulcanisates. The vulcanisates showed comparable ageing resistance in comparison to vulcanisates containing conventional antioxidants. The presence of liquid polymer bound phenol reduce the amount of plasticiser required for compounding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latex waste products contain rubber hydrocarbon of very high quality, which is only lightly cross linked. Selected wastes such as thread waste and glove waste were modified into processable materials by a novel economic process and thermoplastic elastomers were prepared by blending these modified waste materials with high density polyethylene in various proportions. The mechanical properties as well as the rheological behaviour of these blends were evaluated and compared with those of the natural rubber-high density polyethylene blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cure characteristics and mechanical properties of acrylonitrile butadiene rubber/reclaimed rubber blends were studied. Minimum torque, (ma)dmum -minimum) torque, scorch time, cure time and cure rate decreased in presence of reclaimed rul3ber. Tensile strength, elongation at break and compression set increased'with increase in reclaim content. Resilience and abrasion resistance decreased with reclaim loading. Heat build up was higher for the blends. The ageing resistance of the blends was inferior to that of the gum compound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acrylonitrile butadiene rubber (NBR) matrix was reinforced with different levels of short nylon fiber loading. Cure characteristics and mechanical properties of composites in longitudinal and transverse directions have been studied. Cure time was reduced while processability, as indicated by the minimum torque, was marginally reduced with increase in fiber loading. Tensile and tear properties improved with fiber concentration and the values were higher in longitudinal direction of fiber orientation. Abrasion resistance, resilience and compression set were increased in presence of fibers. Elongation at break values showed a drastic drop on introduction of fibers. Heat build up was higher for composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cure characteristics of short polyester fiber-polyurethane composites with respect to different bonding agents (MD resins) based on 4, 4' diphenylmethanediisocyanate (MDI) and various diols like propyleneglycol (PG), polypropyleneglycol (PPG) and glycerol (GL) were studied. Tmax. - Tmin. of composites having MD resin were found to be higher than the composite without MD resin. Minimum torque and Tmax. - Tmin., scorch time and optimum cure time were increased with the increase of MDI equivalence. Optimum ratio of MDI / -of in the resin was found to be within the range of 1-1.5. It was observed from the cure characteristics that for getting better adhesion between short polyester fiber and the polyurethane matrix the best choice of MD resin was one based on MDI and 1:1 equivalent mixture of polypropyleneglycol and glycerol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stress relaxation behavior of polyurethane elastomer and short polyester fiber filled elastomer composites with and without bonding agents at different strain levels and strain rates was studied. It was found that these compounds exhibit a multistage relaxation mechanism and that the rate of relaxation and cross-over time depend on the strain level and strain rate. The incorporation of fibers reduced the stage-I relaxation rate and increased the cross-over time of the gum vulcanisate. A higher rate of relaxation (first stage) was shown by the composites with longitudinal fiber orientation and composites with bonding agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Department of Applied Chemistry, Cochin University of Science and Technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The principal objective of this study was to explore the compatibility of a blend of two synthetic elastomers viz., ethylene-propylene-diene rubber (EPDM) and chlorobutyl rubber (CIIR). Various commercial grades of EPDM were blended with a specific grade of CIIR at different proportions. The mechanical properties such as tensile strength, tear strength, ageing resistance, etc. were studied. On the basis of the observed physical properties, two particular grades of EPDM were found to be compatible with CIIR. Differential scanning calorimetry and scanning electron microscopy confirmed the results. Chlorosulphonated polyethylene was added as a compatibilizing agent to overcome the phase separation of the other two incompatible grades of EPDM in blending with CIIR. The results revealed that the addition of compatibilizer greatly improves the compatibility and thereby the properties of the blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current research investigates the possibility of using single walled carbon nanotubes (SWNTs) as filler in polymers to impart several properties to the matrix polymer. SWNTs in a polymer matrix like poly(ethylene terephthalate) induce nucleation in its melt crystallization, provide effective reinforcement and impart electrical conductivity. We adopt a simple melt compounding technique for incorporating the nanotubes into the polymer matrix. For attaining a better dispersion of the filler, an ultrasound assisted dissolution-evaporation method has also been tried. The resulting enhancement in the materials properties indicates an improved disentanglement of the nanotube ropes, which in turn provides effective matrix-filler interaction. PET-SWNT nanocomposite fibers prepared through melt spinning followed by subsequent drawing are also found to have significantly higher mechanical propertiesas compared to pristine PET fiber.SWNTs also find applications in composites based on elastomers such as natural rubber as they can impart electrical conductivity with simultaneous improvement in the mechanical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary objective of this investigation has been to develop more efficient and low cost adhesives for bonding various elastomer combinations particularly NR to NR, NR/PB to NR/PB, CR to CR,NR to CR and NR to NBR.A significant achievement of the investigation was the development of solventless and environment friendly solid adhesives for NR to NR and NR/PB to NR/PB particularly for precured retreading. Conventionally used adhesives in this area are mostly NR based adhesive strips in the presence of a dough. The study has shown that an ultra accelerator could be added to the dough just before applying it on the tire which can significantly bring down the retreading time resulting in prolonged tire service and lower energy consumption. Further latex reclaim has been used for the preparation of the solid strip which can reduce the cost considerably.Another significant finding was that by making proper selection of the RF resin, the efficiency and shelflife of the RFL adhesive used for nylon and rayon tire cord dipping can be improved. In the conventionally used RFL adhesive, the resin once prepared has to be added to the latex within 30 minutes and the RFL has to be used after 4 hours maturation time maximum shelf life of the RFL dip solution being 72 hours. In this study a formaldehyde deficient resin was used and hence more flexibility was available for mixing with latex and maturing. It also has a much longer shelf life. In the method suggested in this study, formaldehyde donors were added only in the rubber compound to make up the formaldehyde deficiency in the RFL. The results of this investigation show that the pull through load by employing this method and the conventional method are comparable. This study has also shown that the amount of RF resin with RFL adhesive can be partially replaced by other modifying agents for cost reduction.Cashew nut shell liquid (CNSL) resin can be employed for improving the bonding of dipped nylon and rayon cord with NR.Since CNSL resin cannot be added in the dip solution since it is not soluble in water, it was added in the rubber compound. The amount of wood rosin in the rubber compound can be reduced by using CNSL resin.Another interesting result of the investigation was the use of CR based adhesive modified with chlorinated natural rubber for CR to CR bonding. Addition of chlorinated natural rubber was found to improve sea water resistance of CR based adhesive. In the bonding of a polar rubber like nitrile rubber or polychloroprene rubber to a non polar rubber like natural rubber, an adhesive based on polychloroprene rubber was found to be effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dept. of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the first part of the study we probed the effectiveness of rice bran oil as a multipurpose compounding ingredient for nitrile (NBR) and chloroprene (CR) rubbers. This oil has already been successfully employed in the compounding of NR and SBR in this laboratory.In this context we thought it worthwhile to try this oil in the polar rubbers viz, NBR and CR also. The principle of like dissolves like as applicable to solvents is equally applicable while selecting a plasticiser, elastomer combination. Because of the compatibility considerations polar plasticisers are preferred for polar rubbers like NBR and CR. Although plasticisation is a physical phenomenon and no chemical reaction is involved, the chemical structure of plasticisers determines how much physical attraction there is between the rubber and the plasticiser. In this context it is interesting to note that the various fatty acids present in rice bran oil have a long paraffinic chain, characteristic of waxes, with an acid group at the end of the molecule. The paraffinic end of the molecule contributes lubricating effects and limits compatibility whereas the acid end group contributes some polarity and is also chemically reactive. Because of absorption of acid group on the surface of pigments, these acids will have active pigment wetting characteristics also. These factors justifies the role of rice bran oil as a co-activator and lubricating agent for NBR and CR. In fact in our study we successfully replaced stearic acid as co-activator and aromatic oillDOP as processing aid for CR and NBR with rice bran oil.This part of the study has got special significance in the fact that rubber industry now heavily depends on petroleum industry for process oils. The conventional process oils like aromatic, naphthenic and paraffinic oils are increasingly becoming costlier, as its resources in nature are fast depleting. Moreover aromatic process oils are reported to be carcinogenic because of the presence of higher levels of polycyclic aromatic compounds in these oils.As a result of these factors, a great amount research is going on world over for newer processing aids which are cost effective, nontoxic and performanance wise at par with the conventional ones used in the rubber industry. Trials with vegetable oils in this direction is worth trying.Antioxidants are usually added to the rubber compound to minimise ageing effects from heat, light, oxygen etc. As rice bran oil contains significant amount of tocopherols and oryzanol which are natural antioxidants, we replaced a phenolic antioxidant like styrenated phenol (SP) from the compound recipe of both the rubbers with RBO and ascertained whether this oil could function in the role of antioxidant as well.Preparation and use of epoxidised rice bran oil as plasticiser has already been reported.The crude rice bran oil having an iodine value of 92 was epoxidised in this laboratory using peracetic acid in presence of sulphuric acid as catalyst. The epoxy content of the epoxidised oil was determined volumetrically by treating a known weight of the oil with excess HCI and back titrating the residual HCI with standard alkali solution. The epoxidised oil having an epoxy content of 3.4% was tried in the compounding of NBR and CR as processing aids. And results of these investigations are also included in this chapter. In the second part of the study we tried how RBO/ERBO could perform when used as a processing aid in place of aromatic oil in the compounding of black filled NRCR blends. Elastomers cannot have all the properties required for a particular applications, so it is common practice in rubber industry to blend two elastomers to have desired property for the resulting blend.In this RBO/ERBO was tried as a processing aid for plasticisation, dispersion of fillers, and vulcanisation of black filled NR-CR blends.Aromatic oil was used as a control. The results of our study indicate that these oils could function as a processing aid and when added together with carbon black function as a cure accelerator also.PVC is compatible with nitrile rubber in all proportions, provided NBR has an acrylonitrile content of 25 to 40%. Lower or higher ACN content in NBR makes it incompatible with PVC.PVC is usually blended with NBR at high temperatures. In order to reduce torque during mixing, additional amounts of plasticisers like DOP are added. The plasticiser should be compatible both with PVC and NBR so as to get a homogeneous blend. Epoxidised soyaben oil is reported to have been used in the compounding of PVC as it can perfonn both as an efficient plasticiser and heat stabilizer.At present DOP constitute the largest consumed plasticiser in the PVC compounding. The migration of this plasticiser from food packaging materials made of PVC poses great health hazards as this is harmful to human body. In such a scenario we also thought it worthwhile to see whether DOP could be replaced by rice bran oil in the compounding of NBR-PVC blends Different blends of NBR-PVC were prepared with RBO and were vulcanized using sulphur and conventional accelerators. The various physical and mechanical properties of the vulcanisates were evaluated and compared with those prepared with DOP as the control plasticiser. Epoxidised rice bran oil was also tried as plasticiser for the preparation of NBR-PVC blends. A comparison of the processability and cure characteristics of the different blends prepared with DOP and ERBO showed that ERBO based blends have better processability and lower cure time values. However the elastographic maximum torque values are higher for the DOP based blends. Almost all of the physical properties evaluated are found to be slightly better for the DOP based blends over the ERBO based ones. However a notable feature of the ERBO based blends is the better percentage retention of elongation at break values after ageing over the DOP based blends. The results of these studies using rice bran oil and its epoxidised variety indicated that they could be used as efficient plasticisers in place of DOP and justifies their role as novel, nontoxic, and cheap plasticisers for NBR-PVC blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research project aims at developing new applications for CNSL in the polymer field. Cashew nut shell liquid (CNSL) is a cheap agro-byproduct and renewable resource which consists mainly of substituted phenols. By using CNSL in place of phenol, phenol derived from petrochemicals can be conserved and a cheap agro-byproduct utilized.In this study CNSL based resin is prepared by condensing a mixture of phenol and CNSL with hexamethylenetetramine and the effect of P: F ratio and CNSL: P ratio on the properties of synthesized resin is studied. The adhesive properties of CNSL based resin in combination with neoprene rubber are investigated. The effect of varying the stoichiometric ratios between total phenol and formaldehyde and CNSL and phenol of the resin, resin content, choice and extent of fillers and adhesion promoters in the adhesive formulation are studied. The effect of resin on the ageing properties of various elastomers is also studied by following changes in tensile strength, elongation at break, modulus, tear strength, swelling index and acetone soluble matter. Crude CNSL and resins with different P: F ratios and CNSL: P ratios are incorporated into elastomers. Lastly, utility of CNSL based resin as binder for making particleboard is investigated.The results show that CNSL based resin is an effective ingredient in adhesives for bonding aluminium to aluminium. The resin used for adhesive fonnulation gives the best performance at 45 to 55 phr resin and a total phenol: formaldehyde of l:2.9. The resin when added at a rate of l5 phr improves ageing characteristics of elastomers with respect to mechanical properties. The reaction mixture of CNSL and hexa and the resin resulting from the condensation of CN SL, phenol and hexa can be used as effective binders for moulding particleboard.