41 resultados para Di-2-pyridylketone Schiff-base


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work deals with the investigations on sthe structural spectral and magnetic interactions of transition metal complexes of multidentate ligands from D1-2-pyridyl ketone and N(4)-Substituted thiosemicarbazides.Thiosemicarbazones are thiourea derivatives with the general formula R2N— C(S)—NH—N=CR2. In the solution state, the thiosemicarbazones exhibit the thionethiol tautomerism similar to the keto-enol tautomerism, and in solution state the thiol form predominates and a deprotonation at the thiolate group in alcoholic medium enhances the coordination abilities ofthe thiosemicarbazones.The magnetochemistry of metal complexes of di-2-pyridyl ketone is a current hot subject of research, which mainly owes to the excellent structural diversity of the complexes ranging from cubanes to clusters, with promising ferromagnetic outputs.Only few efforts were aimed at the magnetochemistry of metal complexes of thiosemicarbazones, and that too were concerned with the complexes of bisttltioscinicarbazones). However, as far as the monothiosemicarbazones are concerned, the magnetochemistry of transition metal complexes of di-2-pyridyl ketone thiosemicarbazones turned up quite unexplored. Consequently, an investigation into it appeared novel and promising to us and that prompted this study, which can be regarded as the initial step towards exploring the magnetochemistry of thiosemicarbazone complexes, especially of di-2-pyridyl ketone derivatives.We could successfully isolate single crystals suitable for X-ray diffraction for the first three ligands. To conclude, we have synthesized some new thiosemicarbazones and their transition metal complexes and studied their structural, spectral and magnetic attributes. Some ofthe complexes revealed interesting stereochemistries and possible bridging characteristics with spectroscopic evidences. Unfortunately, single crystal Xray diffraction studies could not be carried out for many of these interesting compounds due to the lack of availability of suitable quality single crystals. However, the magnetic studies provided support for the proposed stereochemistry giving evidences for their magnetically concentrated nature. The magnetic susceptibilities measured at six different temperatures in the 80-298 K range are fitted into different magnetic equations, which provided an idea about the magnetic behavior of the compounds under study. Some of the copper, oxovanadium, nickel and cobalt complexes are found to possess anomalous magnetic moments, i.e., they revealed no regular gradation with temperature. However, some other copper complexes are observed to be antiferromagnetic, due to super-exchange pathways. The manganese complexes and one of the cobalt complexes are also observed to be antiferromagnetic in nature. However, some nickel complexes have turned up to be ferromagnetic. Accordingly, the versatile stereoehemistry and magnetic behavior of the complexes studied, prompt us to conclude that the transition metal complexes of di-2-pyridyl ketone thiosemicarbazones are promising systems for potential magnetic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five copper(II) complexes [CuLCl]2·CuCl2·4H2O (1), [CuLOAc] (2), [CuLNO3]2 (3), [CuLN3] (4) and [CuLNCS]·3/2H2O (5) of di-2-pyridyl ketone-N4-phenyl-3-semicarbazone (HL) were synthesized and characterized by elemental analyses and electronic, infrared and EPR spectral techniques. In all these complexes the semicarbazone undergoes deprotonation and coordinates through enolate oxygen, azomethine and pyridyl nitrogen atoms. All the complexes are EPR active due to the presence of an unpaired electron. EPR spectra of all the complexes in DMF at 77K suggest axial symmetry and the presence of half field signals for the complexes 1 and 3 indicates dimeric structures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six new copper complexes of di-2-pyridyl ketone nicotinoylhydrazone (HDKN) have been synthesized. The complexes have been characterized by a variety of spectroscopic techniques and the structure of [Cu(DKN)2]·H2O has been determined by single crystal X-ray diffraction. The compound [Cu(DKN)2]·H2O crystallized in the monoclinic space group P21 and has a distorted octahedral geometry. The IR spectra revealed the presence of variable modes of chelation for the investigated ligand. The EPR spectra of compounds [Cu2(DKN)2( -N3)2] and [Cu2(DKN)2( -NCS)2] in polycrystalline state suggest a dimeric structure as they exhibited a half field signal, which indicate the presence of a weak interaction between two Cu(II) ions in these complexes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two series of transition metal complexes of Schiff bases derived from quinoxaline-2-carboxaldehyde with semicarbazide (QSC) and furfurylamine (QFA) were synthesised and characterised by elemental analyses, molar conductance and magnetic susceptibility measurements, IR, electronic and EPR spectral studies. The QSC complexes have the general formula [M(QSC)Cl2]. A tetrahedral structure has been assigned for the Mn(II), Co(II) and Ni(II) complexes and a square-planar structure for the Cu(II) complex. The QFA complexes have the formula [M(QFA)2Cl2]. An octahedral structure has been assigned for these complexes. All of the complexes exhibit catalytic activity towards the oxidation of 3,5-di-tert-butylcatechol (DTBC) to 3,5-di-tert-butylquinone (DTBQ) using atmospheric oxygen. The cobalt(II) complex of the ligand QFA was found to be the most active catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this regard Schiff base complexes have attracted wide attention. Furthermore, such complexes are found to play important role in analytical chemistry, organic synthesis, metallurgy, refining of metals, electroplating and photography. Many Schiff base complexes are reported in literature. Their properties depend on the nature of the metal ion as well as on the nature of the ligand. By altering the ligands it is possible to obtain desired electronic environment around the metal ion. Thus there is a continuing interest in the synthesis of simple and zeolite encapsulated Schiff base complexes of metal ions. Zeolites have a number of striking structural similarities to the protein portion of natural enzymes. Zeolite based catalysts are known for their remarkable ability of mimicking the chemistry of biological systems. In view of the importance of catalysts in all the areas of modern chemical industries, an effort has been made to synthesize some simple Schiff base complexes, heterogenize them by encapsulating within the supercages of zeoliteY cavities and to study their applications. The thesis deals with studies on the synthesis and characterization of some simple and zeoliteY encapsulated Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes and on the catalytic activity of these complexes on some oxidation reactions. Simple complexes were prepared from the Schiff base ligands SBT derived from 2-aminobenzothiazole and salicylaldehyde and the ligand VBT derived from 2-aminobenzothiazole and vanillin (4-hydroxy-3- methoxybenzaldehyde). ZeoliteY encapsulated Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes of Schiff base ligands SBT and VBT and also of 2-aminobenzothiazole were synthesized. All the prepared complexes were characterized using the physico-chemical techniques such as chemical analysis (employing AAS and CHN analyses), magnetic moment studies, conductance measurements and electronic and FTIR spectra. EPR spectra of the Cu(II) complexes were also carried out to know the probable structures and nature of Cu(II) complexes. Thermogravimetric analyses were carried out to obtain the information regarding the thermal stability of various complexes. The successful encapsulations of the complexes within the cavities of zeoliteY were ascertained by XRD, surface area and pore volume analysis. Assignments of geometries of simple and zeoliteY encapsulated complexes are given in all the cases. Both simple and zeoliteY encapsulated complexes were screened for catalytic activity towards oxidation reactions such as decomposition of hydrogen peroxide, oxidation of benzaldehyde, benzyl alcohol, 1-propanol, 2-propanol and cyclohexanol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis deals with studies on the synthesis, characterisation and catalytic applications of some new transition metal complexes of the Schiff bases derived from 3-hydroxyquinoxaline 2-carboxaldehyde.. Schiff bases which are considered as ‘privileged ligands’ have the ability to stabilize different metals in different oxidation states and thus regulate the performance of metals in a large variety of catalytic transformations. The catalytic activity of the Schiff base complexes is highly dependant on the environment about the metal center and their conformational flexibility. Therefore it is to be expected that the introduction of bulky substituents near the coordination sites might lead to low symmetry complexes with enhanced catalytic properties. With this view new transition metal complexes of Schiff bases derived from 3-hydroxyquinoxaline-2-carboxaldehyde have been synthesised. These Schiff bases have more basic donor nitrogen atoms and the presence of the quinoxaline ring may be presumed to build a favourable topography and electronic environment in the immediate coordination sphere of the metal. The aldehyde was condensed with amines 1,8-diaminonaphthalene, 2,3-diaminomaleonitrile, 1,2-diaminocyclohexane, 2-aminophenol and 4-aminoantipyrine to give the respective Schiff bases. The oxovanadium(IV), copper(II) and ruthenium(II)complexes of these Schiff bases were synthesised and characterised. All the oxovanadium(IV) complexes have binuclear structure with a square pyramidal geometry. Ruthenium and copper form mononuclear complexes with the Schiff base derived from 4- aminoantipyrine while binuclear square planar complexes are formed with the other Schiff bases. The catalytic activity of the copper complexes was evaluated in the hydroxylation of phenol with hydrogen peroxide as oxidant. Catechol and hydroquinone are the major products. Catalytic properties of the oxovanadium(IV) complexes were evaluated in the oxidation of cyclohexene with hydrogen peroxide as the oxidant. Here allylic oxidation products rather than epoxides are formed as the major products. The ruthenium(II) complexes are found to be effective catalysts for the hydrogenation of benzene and toluene. The kinetics of hydrogenation was studied and a suitable mechanism has been proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is mainly concerned with the synthesis and characterisation of new simple and zeolite encapsulated transition metal (manganese(II),nickel(II),and copper(II)complexes of quinoxaline based double Schiff base ligands.Theses ligands are N,N'-bis(quinoxaline-2-carboxalidene)hydrazine,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminoethane,N,N'-bis(quinoxaline-2-carboxalidene)-1,3-diamonopropane,N,N'-bis(quinoxaline-2-carboxalidene)-1,4-diaminobutane,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminocyclohexane and N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminobenzene.The Schiff base ligands have been characterised by spectral and single crystal XRD studies.Theses ligands provide great structural diversity during complexation.Mn(II) and Ni(II) form octahedral with these Schiff bases,whereas Cu(II) forms both octahedral and tetrahedral complexes.Studies on the biological and Catalytic activity of the copper(ll) complexes are also presented in this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of six new polystyrene anchored metal complexes have been synthesized by the reaction of the metal salt with the polystyrene anchored Schiff base of vanillin. These complexes were characterized by elemental analyses, Fourier transform infrared spectroscopy, diffuse reflectance studies, thermal studies, and magnetic susceptibility measurements. The elemental analyses suggest a metal : ligand ratio of 1 : 2. The ligand is unidentate and coordinates through the azomethine nitrogen. The Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) complexes are all paramagnetic while Zn(II) is diamagnetic. The Cu(II) complex is assigned a square planar structure, while Zn(II) is assigned a tetrahedral structure and Mn(II), Fe(III), Co(II), and Ni(II) are all assigned octahedral geometry. The thermal analyses were done on the ligand and its complexes to reveal their stability. Further, the application of the Schiff base as a chelating resin in ion removal studies was investigated. The polystyrene anchored Schiff base gave 96% efficiency in the removal of Ni(II) from a 20-ppm solution in 15 min, without any interference from ions such as Mn(II), Co(II), Fe(III), Cu(II), Zn(II), U(VI), Na , K , NH4 , Ca2 , Cl , Br , NO3 , NO2 ,and CH3CO2 . The major advantage is that the removal is achieved without altering the pH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel bisazomethine Schiff base was synthesised by the condensation of 3-hydroxyquinoxaline-2- carboxaldehyde and 2,3-diaminomaleonitrile. 1H NMR, 13C NMR, HPLC and FT-IR studies revealed that the compound exists in two major tautomeric forms. The Schiff base exhibits positive absorption and fluorescent solvatochromism and displays dual fluorescence with large stoke shifts. Cyclic voltammetric analysis of the compound in 1:1 methanol–THF was influenced by scan rate. Thermal analysis of the compound was undertaken using TG–DTA and DSC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Schiff base, 3-hydroxyquinoxaline-2-carboxalidine-4-aminoantipyrine, was synthesized by the condensation of 3-hydroxyquinoxaline-2-carboxaldehyde with 4-aminoantipyrine. HPLC, FT-IR and NMR spectral data revealed that the compound exists predominantly in the amide tautomeric form and exhibits both absorption and fluorescence solvatochromism, large stokes shift, two electron quasireversible redox behaviour and good thermal stability, with a glass transition temperature of 104oC. The third-order non-linear optical character was studied using open aperture Z-scan methodology employing 7 ns pulses at 532 nm. The third-order non-linear absorption coefficient, b, was 1.48 x 10-6 cm W-1 and the imaginary part of the third-order non-linear optical susceptibility, Im c(3), was 3.36 x10-10 esu. The optical limiting threshold for the compound was found to be 340 MW cm-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Schiff base, 3-hydroxyquinoxaline-2-carboxalidine-4-aminoantipyrine, was synthesized by the condensation of 3-hydroxyquinoxaline-2-carboxaldehyde with 4-aminoantipyrine. HPLC, FT-IR and NMR spectral data revealed that the compound exists predominantly in the amide tautomeric form and exhibits both absorption and fluorescence solvatochromism, large stokes shift, two electron quasireversible redox behaviour and good thermal stability, with a glass transition temperature of 104 oC. The third-order non-linear optical character was studied using open aperture Z-scan methodology employing 7 ns pulses at 532 nm. The third-order non-linear absorption coefficient, b, was 1.48 x 10-6 cm W-1 and the imaginary part of the third-order non-linear optical susceptibility, Im c(3), was 3.36x10-10 esu. The optical limiting threshold for the compound was found to be 340 MW cm-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two novel polystyrene-supported Schiff bases, PSOPD and PSHQAD, were synthesized. A polymerbound aldehyde was condensed with o-phenylenediamine to prepare the Schiff base PSOPD, and a polymer-bound amine was condensed with 3-hydroxyquinoxaline-2-carboxaldehyde to prepare the Schiff base PSHQAD. This article addresses the study of cobalt (II), nickel (II), and copper (II) complexes of these polymer-bound Schiff bases. All the complexes were characterized, and the probable geometry was suggested using elemental analysis, diffuse reflectance ultraviolet, Fourier transform infrared spectroscopy, thermal studies, surface area studies, and magnetic measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordination chemistry of pentadentate 2,6-diacetylpyridine bis(thiosemicarbazone) Schiff base ligands has been intensively studied due to the versatility of the molecular chain in order to obtain very different geometries as well as their broad therapeutic activity. Metal complexes of thiosemicarbazone with aldehydes and ketones have been widely reported. But there have been fewer reports on potential pentadentate bis(thiosemicarbazones) formed from 2,6-diacetylpyridine. Keeping these in view, we have synthesized four bis(thiosemicarbazone) systems with 2,6-diacetylpyridine. In the present work, the chelating behavior of bis(thiosemicarbazones) are studied, with the aim of investigating the influence of coordination exerts on their conformation and or configuration, in connection with the nature of the metal and of the counter ion. The selection of the 2,6-diacetylpyridine as the ketonic part was based on its capability to form polynuclear complexes with different coordination number. The doubled armed bis(thiosemicarbazones) can coordinate to a metal centre as dianionic ligand by losing its amide protons or it can coordinate as monoanionic ligand by losing its amide proton from one of the thiosemicarbazone moiety or it can also be coordinate as neutral ligand. Hence it is interesting to explore the coordinating capabilities of these ligands whether in neutral form or anionic form and to study the structural variations occurring in the ligands during complexation such as change in conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schiff base complexes of transition metal ions have played a significant role in coordination chemistry.In the present study we have synthesized some new Mn(II),Co(II) and Cu(II) complexes of Schiff bases derived from 1,8-diaminonaphthalene.Even though we could not isolate theses Schiff bases (as they readily cyclise to form the perimidine compounds),we were able to characterize unequivacally the complexes synthesized from these compounds as complexes of Schiff Bases. We Synthesized three perimidine derivatives ,2-(quinoxalin-2-yl)-2,3-dihydro-1H-perimidine,2-(2,3-dihydro-1H-perimidin-2-yl)-6-methoxyphenol and 4-(2,3-dihyro-1H-perimidin-2-yl)-2-methoxyphenol by the condensation of 1,8-diaminonaphthalene with quinoxaline-2-carboxaldehyde,2- hydroxy-3-methoxybenzaldehyde or 4-hydroxy-3-methoxybenzaldehyde respectively.Theses compounds were used as precursor ligands for the preparation of Schiff base complexes.The complexes were characterized by using elemental analysis ,conductance and magnetic susceptibility measuremets ,infrared and UV-Visible spectroscopy ,thermogravimetric analysis and EPR spectroscopy .We also encapsulated the complexes in zeolite Y matrix and these encapsulated complexes were also characterized. We have also tried theses complexes as catalysts in the oxidation of cyclohexanol and decomposition of hydrogen peroxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordination chemistry of schiff bases is of considerable interest due to their various magnetic, catalytic and biological applications. Here it describes the spectral characterization of schiff bases and its Mn (II), Cu (II) and Ni (II) complexes. Then synthesis and spectral characterization of Zn (II), Cd (II) and Co (II) complexes of schiff base derived from 3-Formylsalicilic Acid and 1,3-diaminopropane. Then it discusses the synthesis and spectral studies of Copper (II) complexes of 2-Hydroxyacetophenone N-phenyl semicarbazone. Finally it discusses the synthesis and spectral characterization of Co (III) complexes of salicylaldehyde N-phenyl semicarbazone. The preparation and characterization of Cobalt (III) complexes of salicylaldehyde, N-phenylthiosemicarbazone containing hetrocyclic bases phenalthroline and bipyridine. Thiocyanate, azide and perchlorate ions act as coligands. Elemental analysis suggests +3 state for Cobalt. HNMR, IR and UV-visible spectra characterize the complexes.